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Abstract

In this paper we study an insensitizing control problem for the Navier-Stokes system. The novelty is
that we insensitize the rotational of the solution using controls with one component fixed at zero. This
problem can be formulated as a null controllability problem for a nonlinear cascade system for which we
follow the usual duality approach. First, we prove a suitable Carleman inequality for a system coupling
two Stokes like equations, which leads to the null controllability at any positive time. Finally, we deduce
a local null controllability result for the cascade system by a local inverse argument.
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1 INTRODUCTION

Let  C RY (N = 2 or 3) be a bounded simply-connected open set whose boundary 952 is regular enough.
Let T' > 0 and let w C €2 be a (small) nonempty open subset which will usually be referred as control domain.
We are going to use the notation @ = Q x (0,7) and X = 9Q x (0,T). Let us also introduce another open
set O C 2 which is called the observation set.

Let us remember the definition of some usual spaces in the context of incompressible fluids:

V={ycH} QN :V.y=0inQ}

and
H={yecl*(Q)Y:V-y=0inQ, y-n=0on dN}.

To be more precise about the investigated problem, we present the following control system with incomplete
data:
Yy —Ay+(y,V)y+Vp=f+ovl,, V.y=0 inQ,
y=0 on X, (1.1)
y(0) = y° + 79° in Q.

Here, y(z,t) = (yi(x,t));<;<n is the velocity of the particles of an incompressible fluid, v = (vj)j.vzl is
a distributed control localized in w, f(z,t) = (fi(x,t));<;,«n € L2(Q)" is a given, externally applied force,
and we have denoted o

N
(W V)y?), = yiow?, i=1,...,N.
j=1
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The initial state y(0) is partially unknown in the following sense: we suppose that y° € H is known, §° € H
is unknown with ||QOHL2(Q)N =1 and that 7 is a small unknown real number.

The objective of this study is to prove the existence of controls that insensitize some functional .J;
depending on the velocity field y. In other words, we have to find a control v such that the influence of the
unknown data 74° is not perceptible for our functional:

8J7(y) o ~0 2 N ~0 —
or | 0 for all §° € L*(Q)" such that |7 |L2(Q)N =1, (1.2)
In the important work [30], J.-L. Lions considers this kind of problem and introduces many related

questions. One of these questions, in non-classical terms, was the existence of insensitizing controls for the
Navier-Stokes equations.

In this work the idea of using a new observation functional arose, which was related to the notion of
curl. As a motivation the rotor or rotational physically measures the rotation in the movement of a fluid,
in this case (1.2) means that a small perturbation in the initial condition does not alter (desensitize) the
rotation in the movement of the fluid. For example, the curl is involved when an airplane suffers turbulence
during a flight because it can measure the chaos that is generated behind the wings of the airplanes, or
when turbulence is generated at the rudder of a ship, see [23, 41, 33]. In the literature the usual observation
functional is given by the square of the local L?-norm of the state variable y (see [0, 29, 36]). Here, the
functional is given by the square of the local L?-norm of the rotational of the state variable y, that is:

Jr = // |V x y|*xda dt, (1.3)
Q

where x : Q@ — R is a bounded function such that supp(x) € O, 0 < x < 1 and x = 1 in an open set Og
with Og € O. Actually, for some technical reasons described below, we will assume that

y=1p if N=2 (1.4)
where 1 is the characteristic function of O, and
X € C(0) if N = 3. (1.5)
The relevance of taking x as (1.4) or (1.5) is explained in Remark 4.2.
The first results of existence of insensitizing controls were obtained for the heat equation in [6, 39]. Both

papers are concerned as functional the local LZ—norm of the state.

An important topic in the control theory is controllability with controls having some vanishing components,
which can be an interesting problem from an applications point of view. The first studies were obtained in
[17] for the local exact controllability to the trajectories of the Navier-Stokes and Boussinesq system when
the closure of the control set w intersects the boundary of . Then, this geometric assumption was removed
for the Stokes system in [12], for the local null controllability of the Navier-Stokes system in [9], and for
the Boussinesq system in [7]. Recently, the local null controllability of the three dimensional Navier-Stokes
system with a control having two vanishing components has been obtained in [13].

Now, related studies with insensitivity for fluids, the first result was obtained in [31], where the author
prove the existence of e-insensitizing controls of the form (vq,ve,0) for the 3D-Stokes system. Later, the
existence of insensitizing controls for the Stokes system is demonstraded in [19] and for the Navier-Stokes
system in [21]. Finally, in [11], the existence of insensitizing controls for the Navier-Stokes system with one
vanishing component was established. The present paper can be considered as a continuation of this last
study. The main goal is to establish the existence of insensitizing controls for the Navier-Stokes system (1.1)
having one vanishing component, that is, v; = 0 for any given ¢ € {1,..., N}. Notice that if N = 2, this
means v = 0. Also, here we are going to use a functional not usual in the literature.

The special form of the observation functional J, allows us to transform our insensitizing problem

as a controllability problem of a cascade system (for more details, see [6], for instance). In particular,
condition (1.2) is equivalent to z(0) = 0 in Q, where z together with w solves the following coupled system:
wy — Aw + (w,V)w+Vp, = f+vl,, V-w=0 in Q,
2zt — Az + (2, VHYw — (w, V)2 + Vp, =V x ((Vxw)x), V-2=0 inQ,
(1.6)
w=0, z=0 on X,
w(0) =19, 2(T)=0 in Q.



Here, (w, py) is the solution of system (1.1) for 7 = 0, the equation of z corresponds to a formal adjoint
of the equation satisfied by the derivate of y with respect to 7 at 7 = 0 and we have denoted

N
((Z,Vt)w)i = szaiwj, i=1,...,N.
j=1
In effect, differentiating y solution of (1.1) with respect to 7 and evaluating it at 7 = 0, condition (1.2) reads

// Y-V x (Vxw)y)dzdt =0, V§° e L2(Q)Y such that |\g0HL2(Q)N =1, (1.7)
Q

where y7 is the derivate of y solution of (1.1) at 7 = 0. Then, y™ solves

yl — Ay + (", V)y+ (v, V)y" +Vp" =0 inQ,

V-y =0 in Q,
y" =0 on X, (1.8)
y7(0) = §° in Q.

Hence, substituting V x ((V x w)x) by the left-hand side of the equation of z in (1.6) and integrating by
parts we obtain

/z(O)yf’dx = // vV x (V xwpy)dzdt, v§° e L)Y such that [|[3°] b g =1 (19)

Combining (1.7) with (1.9), we deduce that z(0) =0 in Q.
We are going to prove the following controllability result for system (1.6):

Theorem 1.1. Leti € {1,...,N}, m > 14 be a real number, and x : @ — R given by (1.4) if N =2, or
(1.5) if N = 3. Assume wNO # 0 and y° = 0. Then, there exist 6 > 0 and C > 0 depending on 2, w, O and
T such that for any f € L*(Q)N satisfying Hec/tmf‘ Lo < 6, there exists a control v € L?(w x (0,T))N
with v; = 0 and a corresponding solution (w, z) of (1.6) satisfying z(0) = 0 in Q.

Remark 1.1. Besides, respect to insensitizing the functional J. one can lead the state w to 0 at timet =T
Just by assuming an extra condition on f at timet =T

for a constant C probably different to the one shown in Theorem 1.1.

etm(TC—t)m ’

< 400, (1.10)
LA(Q)N

Remark 1.2. The condition y° = 0 in the main theorem is due to the fact that the first equation in (1.6)
is forward and the second one is backward in time. Other works related with insensitizing controls in the
parabolic case, including linear equations, assume this condition on the initial data. A study of the possible
initial conditions which can be insensitized is made for the heat equation in [/0]. This work shows that the
answer is not obvious.

Remark 1.3. Notice that if wN O # 0, it is always possible to choose Oy € O such that OgNw # 0. Thus,
from now on, the open set Oy from (1.3) will be fized like this.

As a consequence of Theorem 1.1, we obtain the following result:
Corollary 1.1. There are insensitizing controls v for the functional J. given by (1.3).

To prove Theorem 1.1 we follow a standard approach introduced in [18] (see also, [9, 17, 25]). We first
deduce a null controllability result for the linear system:

wy —Aw+ Vp, = fY+ol,+f, V-w=0 in Q,

-z —Az+Vp,=fF+Vx(Vxw)x), V-2=0 inQ, (1.11)
w=0, z=0 on X, '
w(0) =y% 2(T)=0 in €,



where f* and f* are going to be taken to decrease exponentially to zero at ¢t = 0.
The main tool to prove this controllability result for system (1.11), and the second main result of this
study, is a suitable Carleman estimate for the solutions of its adjoint system, namely,

—pr —Ap+Vr=g?4+Vx(Vxy)x), V-o=0 inQ,

Y — A+ Vh=g% V-p=0 in Q,
<,0t: 0, v=0 on X, (1.12)
@(T) =0, ¥(0)=1" in €2,

where " € H, g¥ and g% are going to be taken with different regularity properties that will be detailed
later on. In fact, this Carleman inequality is of the form

J[ 7@ (e + o) asae < € | [ate) (6.°) [y ] #oepasa | i)
o =1

jj;iwx(O,T)

where pi(t), k € {1,2,3}, are positive weight functions, j € {1,..., N} \ {i}, C > 0 only depends on 2, w,
O and T and X is a suitable Banach space. This estimate is stated in Proposition 3.1.

This paper is organized as follows. In Section 2, we state the main results that we are going to use in the
following sections. In Section 3, we prove a Carleman inequality for the adjoint system (1.12). In Section 4,
we show the null controllability of the linearized cascade system (1.11). Finally, in Section 5, we deal with
the null controllability for the nonlinear cascade system (1.6).

2 TECHNICAL RESULTS AND NOTATIONS

In this section we introduce some notation and all the technical results needed in this work.

2.1 SOME NOTATIONS
We denote by Yy := L?(0,T; H). For n € Z*, we define the space Y,, as follows:

Y, = L2(0,T; H*"(Q)N nV)n H™(0,T; L*(Q)V),
given by the norm

||U|\§fn = ||UH2L2(O,T;H2”(Q)N) + ||U\|§{n(o,T;L2(Q)N)'
The following subspace is going to be used only in Section 4. For every n € Z™, we set

Voo :={ueY,: [Lhuls =0, [C5u)(0)=0, k=0,...,n -1},
endowed with the equivalent norm (by Lemma 2.4 with ug = 0),
[ull¥, o = ILHull T2 gy

Here, L := 0;—Pr(A), where Py, denotes the Leray projector over the space H, i.e. Pr : L2(Q)N — L*(Q)",
Pru:=u— Vp, where Ap=V -uin Q and Vp- 7 = u- 7 on I (see [37], pages 16-18).
Also, we denote by Xg := L?(0,T;V) and for n € Z*, we define the space X,, as:

X, = L2(0, T HH QN n V) 0 HY (0,75 HH(@)V),

given by the norm
Hu||§<n = Hu||i2(O,T;H2”+1(Q)N) + ”uH?{l(O,T;H?"*l(Q)N)'



2.2 CARLEMAN ESTIMATES

Here, we present some Carleman estimates needed to prove estimate (1.13). These inequalities have been
proved in previous papers and we give precise references about where to find each one of them. Before we
can establish these estimates, let us introduce some classical weight functions. Let wy be a nonempty open
subset of R such that wy € wN Op (see Remark 1.3) and n € C?(Q) such that

[Vn| >0in Q\wy, 7>0inQ and 7n=0on dN.

The proof of the existence of such a function 7 is given in [18]. Let also £ € C*°([0, T]) be a positive function
in (0,7) satisfying

ot) =t, vt € [0,T/4],

Wty=T-t, Vtel[3T/4,T],

0(t) <U(T/2), Ytelo,T].

Then, for all A > 1 and m > 14 we consider the following weight functions:

Ml — An() e (@)
a(z,t) = O §(w,t) = O
a*(t) = max a(z,t), &*(t) = miné(x,t), (2.1)
€ R e
&(t) = mina(z,t), £(t) = max §(z,t).
e zeQ)

Notice that from (2.1), we obtain the following properties:
0P al,07¢] < CeM ™ |asal, |ag] < e, (2.2)

where n is any nonnegative integer, ¢ is a N-multi-index and C' > 0 is a constant only depending on 2, A, n
and ¢. This property is also valid for the pairs (a*, £*) and (&, €). The following result is a Carleman inequality
for parabolic equations with nonhomogeneous boundary conditions proved in [20]:

Lemma 2.1. Let fo, f1,..., fn € L?(Q). There exists a constant A1 > 0 such that for any X > A1 there
exists C > 0 depending only on X\, Q, wo, n y £ such that for every u € L?(0,T; HY(Q)) N HY(0,T; H~(Q))
satisfying

N
Uy — Au = fo—l—zajfj mn Q,
j=1
we have

2

H1/4,1/2(E)

// e 105 (s e Vu)? + s¢luP)dzdt < C | s // e 10sag |y Pda dt + ”871/46758(1571/414’
Q

wo X (O,T)

2

N
ats +8_2 //6_1osa§_2‘f0|2d$dt+Z//6_105a|fj‘2d.’tdt ,
) Q =g

n Hs—l/4e—5sa§—1/4+l/mu‘

for every s > C.
Recall that
||“HH%,%(Z) = (HU||?{1/4(0,T;L2(39)) + Hu”iz(o,T;Hlﬂ(89)))1/2‘
The next technical result corresponds to Lemma 3 in [12].

Lemma 2.2. Let r € R. There exists C' > 0 depending only on Q, wg, n y £ such that , for every T > 0 and
every u € L?(0,T, H* (1)),

82 // 6_1050‘§T+2\u|2dxdt S C // e—lOsa£r|vu|2dxdt+ 82 // 6_1OSQ§T+2‘U|2d$dt ,
Q Q )

on(O,T

for every s > C.



The following result corresponds to a new Carleman estimate that we are going to prove in Appendix A:

Lemma 2.3. Let ug € H, fo € L*(Q)N and fi € L>(Q)N*N. Then, there exist a constant C(Q,wy,T) > 0
such that for any i € {1,..., N}, the weak solution u € L?(0,T;V)NL>(0,T, L2(Q)N)nH(0,T; H-1(Q)N)

of
—Au+Vh=f+V-fi, V-u=0 inQ,
u=0 on X, (2.3)
u(0) = u° in Q.

satisfies

84// —13sa™ ( ) ‘U| dxdt—l—s // —13sa™ 3 1/m|vu‘ dxdt—|—$ // —13sa” 2 2/m|h| dax dt
Q
< C //efllsa*‘f0|2dzdt+57//6711504 ( ) |f1| dl’dt+87z // —2sa—11sa™ )7|Uj‘2d$dt ’
Q Q

Jj;élwx(O T)
(2.4)

for every s > C.

2.3 REGULARITY ESTIMATES

Here, we state some regularity results concerning the Stokes equation.
The next result concerns the regularity of the solutions to the Stokes system which can be found in [28]
(see also [37]):

Lemma 2.4. For every T > 0, every u® € V and every f € L*(Q)", there exists a unique solution
ue L20,T; H2(Q)N)n HY(0,T; L2 (Q)Y) N L>(0,T; V)

to the Stokes system
—Au+Vp=f, V-u=0 inQ,
u=0 on Y (2.5)
u(0) = u° in £,

for some p € L2(0,T; HY(Q)), and there exists a constant C > 0 depending only on Q such that

2 2 2 2
lullz2 0,20~ + 1l 7,020y + el 2o 0,7v) + 121 Z 20,7811 () < € <||f||L2(Q)N + HUOHV> - (2.6)

In order to deal with more regular solutions, let us introduce some compatibility conditions. We are going to
say that f satisfies the compatibility condition of order r if, for any nonnegative integer k < r — 1, we have

k
= (9IAFf)(0,2), x € 09.
1=0

where p° = 0 and, for k > 0, p¥ is the solution of the Neumann boundary-value problem

Aph = (V- 9771 £(0) in €,
k=1, A k—2 ‘ ‘
Bp® = AR+ 3 (@M,H f)(u)) =3 0, (agA’“*Q*Z)V - f(0)  on AQ.
i=0 i=0
One has the following lemma (see, for instance [28, 35, 38]):

Lemma 2.5. Let T > 0 and let r be a positive integer. There exists C' > 0 depending only on r and €
such that, for every f € Y, satisfying the compatibility conditions of order r, the solution u of (2.5) satisfies
u €Y, and

ully, ., < CUFIT, + W Frerer @)vav)- (2.7)



The following regularity result can be found in [19] where the author does a proof’s sketch of the
regularity result when the function of the right-hand side, f € L?(0,7;V). On the other hand, when
fe L0, T; HY(Q)N) N HY0,T; H-1(Q)N) see [38, 28] and [34].

Lemma 2.6. For every T > 0, every u® € H2(Q)N and every f € L*(0,T;V), the unique solution to the
Stokes system (2.5) satisfies
ue L*0,T; H*(Q)N)n HY(0,T;V)

and there ezists a constant C' > 0 depending only on Q such that

2 2 2 2
||u||L2(O,T;H3(Q)N) + ||“HH1(0,T;V) <C <||f||L2(0,T;V) + Hu0||H2(Q)N) : (2.8)

In order to treat more reqular solutions, let us introduce some compatibility conditions. We are going to say
that f satisfies the compatibility condition of order r if, for any nonnegative integer k < r — 1, we have

k
= (9IAFf)(0,2), x € 09.
1=0

where p° = 0 and, for k > 0, p* is the solution of the Neumann boundary-value problem
Ap* =0 in Q,
k-1 . .
Onp® = A0 . n + 37 ((@ZAk’lﬂf)(O)) -n on 0.

i=0
We have the following lemma which is analogous to Lemma 2.5:

Lemma 2.7. Let T > 0 and let v be a positive integer. There exists C > 0 depending only on r and 2
such that, for every f € X, satisfying the compatibility conditions of order r, the solution u of (2.5) satisfies
u € Xpqp1 and

lull, ., < CUFI%, + 1 lF72rr2 )n)- (2.9)

3 CARLEMAN ESTIMATE FOR THE ADJOINT SYSTEM

In this section we are going to prove a new Carleman estimate for the Stokes coupled system:

—pr —Ap+Vr=g?4+Vx(Vxy)x), V-o=0 inQ,

=AY+ Vh=g%, V=0 in @, (3.1)
=0, v=0 on X, )
@(T) =0, ¥(0)=1v° in €2,

where g% € L2(Q)"N, g¥ € X3 and ¥° € H. One has the following proposition:

Proposition 3.1. Assume that wN O # (. Then, there exists a constant C > 0 depending only on A, , w
and ¢ such that for anyi € {1,..., N}, any g® € L*(Q)", any g¥ € X3 and any \° € H, the solution (¢,)
of (3.1) satisfies

34// ~1850° (44 o Pdar dt + 57 // ~1080" (6477 2z d
Q

N
2
<C 2816 // e—lOsa€16+5/m|@j|2dx At + st He—ssafn/zg@’ s

He—Q/Qsa*g

—
g,# wx (0,T)

for every s > C.



For simplicity, we are going to prove Proposition 3.1 with N = 2 and i = 2 (we can also to take i = 1).
The same method can be applied to the case N = 3.

The idea of the proof of Proposition 3.1 is as follows. First, we prove a Carleman inequality for the system
satisfied by ¢. Then, we apply Lemma 2.3 to the system satisfied by . Finally, we combine the Carleman
inequalities of ¢ and ¢ and we use the coupling of the equation (1.12); (the first equation of (1.12)) in the
observation set O x (0,T) to absorbe the local term with A%¢;. This will prove the estimate (3.2).

3.1 CARLEMAN ESTIMATE FOR

We prove the Carleman estimate for 1. We consider the Stokes system

Yy —Ap+Vh=g¥ V-9p=0 inQ,
=0 on X, (3.3)
P(0) = " in Q,

where 1/ € H and g% € X3. We prove the following estimate for the solutions of system (3.3).

Proposition 3.2. Let @ C ) be a nonempty open set such that wg € w. Then, there exists a constant C' > 0
depending only on X, Q, w and € such that for anyi € {1,..., N}, any ¥° € H and any g¥ € X3, the solution

¥ of (3.3) satisfies

N

71// e~1050¢=1 YT UV AZY, [ dxdt+s// ~10s0g | Y VVAZY, | da dt
Jj=1
J#i

+s // 10503 G AZ | de di + 57 // 10505 g A24* da di + 57 // 1050 T | A2y 1% da dt

+s7// —10sa” (€T |* da dt 4 57 // —10sa” (T |7y)|? da dt + 57 // —10sa™ (e | Agp|? e dt
Q

<C Z // 71050467 A2¢j|2d$dt+// 7105a|v2

j;éi wx(0,T)

5/2 —5sa™ (E*)

4 ”83/26—5511*@*)

1/2 —5sa™ (¢*
s eee

—1/2 —5sa’™ (¢*\—
e e

// 105 (eNTIAGY 2dadt |, (3.4)

for every s > C.
Proof. Proposition 3.2 is proved in Appendix B. O

To continue with the proof of Proposition 3.1, we take @ C 2 such that wyg € @ € w N Oy. Furthermore,
from estimate (3.4), notice that

I(¥) <C | 5" // e 105 T | A2 |2 da dt + He_g/Qso‘*g

©x(0,T)

(3.5)



for every s > C, where

I(¢) :=s1 / / e 1052¢ Y VVVAZY, Pd dt + s / / e 1052 | VVV A% |2da dt
Q Q

+ 53 / / e 10503 YV AZY, |2 dz dt 4 s° / / e 10523 T A%y |2da dt + 57 / / e 1052 ¢TI A2y |2 da dt
Q Q Q

+87//6_105a*(§*)7|’(/}|2d$dt+87//6_105a*(f*)7lvw‘2dmdt+87//6_108a*(§*)7|A’l/}|2d(Edt.
Q Q Q

3.2 CARLEMAN ESTIMATE FOR ¢
Now, we deal with the Stokes system:

—pr = A+ VT =V x (Vx¢)x)+¢% V-9o=0 inQ,
=0 on X, (3.6)
o(T)=0 in Q.

Applying Lemma 2.3 to the system (3.6), we see that

34// —13sa™ ( ) |<,0| dxdt—l—s // —13sa™ 3 1/m‘v<p| da dt
Q

<C s7 // e—llsa* (é)?‘v % ’(/J|2d$dt-‘r s7 // 6—25&—1130/‘ (é)7|301|2d$ dt

Ox(0,T) wx(0,T)

+// el““*lg*pﬁdmdt) , (3.7)

Q

for every s > C.
Notice that, using the fact that ¥|y;, = 0 we obtain

57 // ~11s0” 271V x y|2da dt <Cs7 // ~11s0” (87| 2dz dt

Ox(0,T)
<Cs" // —10sa” () 7|74 |2dz dit.
Then, using this inequality in (3.7), we have that

// —13sa* |g0|2d:rdt+s //6_1350‘*(5*)3_1/m|Vg0\2dxdt
Q
<C // —10sa™ \VW dxdt—I—s // —2sa—11sa™ )7|<p1\2d33dt

wx(0,T)
+// e g# P da dt) , (3.8)
Q
for every s > C.

Therefore, the first term of the right-hand side of (3.7) is absorbed by the penultimate term of the
left-hand side of (B.15).



3.3 END OF THE PROOF OF PROPOSITION 3.1
Notice that combining (3.5) with (3.8), we obtain:

// —13sa” (e o 2da dt + (1))

// —2sa—11sa™ ) |<P1‘ dl‘dt—FS // _1OSQ§7‘A2¢1| dzdt
wx(0,T)

wx(0,T)

+ He—9/2so¢*g

2 *
++//e_1150‘ lg?[2dzdt | , (3.9)
X3

Q

for every s > C.

To conclude the proof of Proposition 3.1, we estimate the local term A21); in terms of local integrals of
1 of the left-hand side of (3.9).

We start by looking at the equation satisfied by ¢; in Og x (0,7, and applying the Laplacian, we find

AQ’(/)l = (ASOI)t + AQQDl + Agf — 81V . gS" in OO X (O,T), (310)

where we have used that Amr =V - g% in Oy x (0,T).
Now, let § € C8(wN Op) be a nonnegative function such that § = 1 in © with @ € wN Oy. Using (3.10),
and since w C Oy, we have:

J = // e 05T A2y |2 da dt.

wx(0,T)

/ / fe=1050¢T| A2y, 2z dt.
wﬂOOX 0 T)

// e 10 ETA Y, ((A<P1)t + A%+ Agf — OV - 9<P>dx dt.
wﬂOOX 0 T)

After integrating by parts in space and time, we obtain:

J < — // 9(576_103a§7)tA2w1Ag01dx dt

wNOp x(0,T)
+ / / (A(957e_103“§7)A21/J1 +2V(0sTe 05T - VA%) Aprda dt
wNOg X (O,T)
+ / / 0571057 ( — (A1) + A(A%l)) Apidz dt
wNOpx(0,T)
/ / A(0sTe 05T A2 g dar dt — / / V (01(0sTe 05T ARpy)) - gPdadt.  (3.11)
wNOpx(0,T) wNOp x(0,T)

Now, we use the equation satisfied by ;:

A%y = (Ay)y — Ag¥ in Oy x (0,T),
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where we have used the fact that Ah =0 in Oy x (0,T). Therefore,

J < — // 9(8767103af7)tA2¢1A(p1d3} dt

wNOux(0,T)
+ / / (A(05761080‘§7)A2w1 + 2V (#s7e1052¢7) VA%) Apdz dt
wNOp x(0,T)
// 0s7e 10T A2GY Ay da dt + / A(0s e 05T A2 ) g dr dt
wNOp x(0,T) wNOg x(0,T)
// 1(0s7e 108“57A2¢1)) - g¥dx dt.
wNOp x(0,T)
5
=> Jr, (3.12)
k=1

for every s > C.
For J;, we use integration by parts again, also, we apply the properties of the weight functions shown in
(2.2) and, finally, we use Young’s inequality, to get:
Jy = // A(O(sTe 195N VA% o dae dt + 2 // V(0(s e 1957, ) VA2 oy d dt
wNOp x(0,T) wNOp x(0,T)

// 0(s7e 10507 A (A% ) prda dt.

wNOp x(0,T)
<eI () + C(e)s® // s13em10sagld+2/m| ) 124y dt. (3.13)
wx(0,T)
for every s > C' and any € > 0.
For J,, we use integration by parts again, also, we apply the properties of the weight functions shown in
(2.2) and, finally, we use Young’s inequality, to have:
Jo = / / A2(9sTe 1052V AZyp oy da dt + 2 / / VA(Os e 195N\ V A% o dar dit
UJQOQX(O,T) meUX(O,T)
/ A(0sTe 15T A3y oy da dt 4 2 / AV (0s7e 105\ VA% o1 da dt
meUX(O,T) meQX(O,T)
+4 / / V2(0s7e 1050 T\V2 A2y oy da dt + 2 / / V(0sTe 105\ A3epy o da dt
wﬁO()X(O,T) wﬁO()X(O,T)
<el () + C(e)s® // e 105 g1 12 de dt. (3.14)
wx (0,T)

for every s > C and any € > 0.
For J3, we use integration by parts again, also, we apply the properties of the weight functions shown in
(2.2), to obtain:

Jy = / / A(sT0e 10T A2g¥ o da di + 2 / / V(s70e 10T\ VA2gY o da dt

wNOyx(0,T) wNOyx(0,T)
3
// 105‘1§7A3gf’<p1dx dt := Z I3
wNOx(0,T) k=1

11



To estimate J3; with k € {1,2,3}, we use Young’s inequality. We have

Ty < o~ Bsagl—5/(2m) w’ 16 // ~10sa¢16+5/m 1
31 _C f L2(0.T:HA(Q)N f |g0 | dx dt (3 5)
wx (0,T)
Ty <C' || s1/2e=550¢1/2=3/m 1/}’ 15 // —10sa¢1546/m 1
32 _C § L2(0. T H5 Q)N) f |<,O ‘ dx dt (3 6)
wx (0,T)
Jan < —5sa¢—T7/(2m) TZJ’ 14 // —10sa ¢14+7/m t, 1
33 <C'|le & L2(0.T:HS ()N 3 l¢1 | dzd (3.17)
wx(0,T)

for every s > C and any € > 0.
For J,, we use integration by parts again, also, we apply the properties of the weight functions shown in
(2.2) and, finally, we use Young’s inequality, to get:

Jy = / / A(0s"e 05 A%y gf dar dt + 2 / V(0s e 105\ VA gf de dit

wNO x(0,T) wNOux(0,T)
/ / 0s7e 10T A (A ) gf d dt.
wﬂOoX O T
<el(y) + C(e)s™ // e 10saelt g#12dz dt, (3.18)
wx (0,T)

for every s > C and any € > 0.
For J5, we use integration by parts again, also, we apply the properties of the weight functions shown in
(2.2) and, finally, we use Young’s inequality, to obtain:

Js <el(y) + C(e)s™ // e t0saell|g912qy dt, (3.19)

wx(0,T)

for every s > C and any € > 0.
Combining (3.13)—(3.19) and (3.9), together with the fact that

57672sa7115a (5)7 < 051667105a§16+5/m and e~ 11se < 05116710504511’

for every s > C, we deduce (3.2). This concludes the proof of Proposition 3.1.

4 NULL CONTROLLABILITY OF THE LINEAR SYSTEM

In this section we deal with the null controllability of system:

Lw+Vp, =fY+0vl,, V-w=0 in Q,
L%+ Vp, =f+Vx(Vxw)y), V-z=0 inQ, (4.1)
z=0, w=0 on X, ’
w(0)=0, 2(T)=0 in Q.
where
L:=0;—A and L*:=-0;—
which is the adjoint operator of £. We look for a control v with v; = 0, for some given i € {1,..., N} such

that the associated solution of (4.1) satisfies z(0) = 0. To do this, let us first state a Carleman inequality
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with weight functions not vanishing in ¢ = T. We introduce the following weight functions:

Ml — eAn(@) eAn(@)
B(x,t) = W, y(z,t) = o
B*(t) = max B(z, ), yi(t) = mlnv(x t),
€N €
B(t) = min B(x, 1), A(t) = max y(, t).
€N zeQ

where
g(t)— K(t), OStST/Q,
Tl oo, T/2<t<T.

Here, we will assume more regularity for the function g% to deal with the null controllability of the linear
system.
Now, we have to following Lemma.

Lemma 4.1. Leti € {1,...,N} and let s be like in Proposition 3.1. Then, there exists a constant C' > 0
(depending on s and \) such that for any g¥ € L?(Q)YN, any g¥ € Yu0, every solution (¢,v) of (3.1) satisfies

[(4.2)

// ~1BT (192 + |Vy|?) dadt < C Z // e 98 p; \2dxdt+H —4siyg

é.;é%wx (0,T)

el

Ya,0

To prove estimate (4.2) it suffices to combine (3.2) and classical energy estimates for the Stokes system
satisfies by ¢ and 1. For simplicity, we omit the proof. For more details on how to get (4.2), see [9, 7] or [21].

Now we are ready to prove the null controllability of system (4.1). The idea is to look for a solution in
an appropriate weighted functional space. To this end, we introduce, for i € {1,..., N}, the spaces

Eé ={(w, pw, 2,Dz,v) : € ey e L2( )2, %Pl € LQ(Q)
e () Ty e L0, T; H2(Q)?) N L=(0,T; V), v; =0,
18 (y) T/ M e 120, T, V)N L (0 T;H), z(T)=0,
e (Lw + Vpy, —vlly) € L2(Q)%, €™ (L2 + Vp. — V x ((V x w)x)) € L*(0,T; H1(Q)?)},
and
E§ ={(w, pw, 2, P>, V) : = L*(Q)3, PP, € L3 (Q)?,
e*s8” (7*)7171/7”11) € L2(0,T; H*(Q)*) N L>=(0,T;V), v; =0,
BT ()T my e L2(0, T H2(Q)%) N L2°(0,T; V), 2(T) =0,
™ (Lw + Vpy —vly) € L*(Q)%, €7 (L2 + Vp. — V x ((V x w)x)) € L*(Q)*}.
It is clear that E% is a Banach space endowed with their natural norms.

Remark 4.1. In particular, an element (w, py, 2, p=,v) € EY satisfies w(0) = 0, z(0) = 0, v; = 0. Moreover,
e®P" (v*)¢ is bounded, Va > 0,Vc € R, (4.3)
All the details are given in the Section 5.

Proposition 4.1. Leti € {1,...,N} and x : Q@ = R given by (1.4) if N =2, or (1.5) if N = 3. Assume
the hypothesis of Lemma 4.1 and the following hypothesis on the initial condition and the right-hand side of
system (4.1):
IfN=2: ™0 (fv f%) e L*(Q)? x L*(0,T; H-(R)?).
IfN=3: "7 (fv.f7) € Q) x L*(Q)*.
Then, we can find a control v € L*(0,T; L?(w)™) such that the associated solution (w,py,z,p.,v) of (4.1)
belongs to EY;. In particular, v; =0 and z(0) = 0 in Q.

(4.4)
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Proof. Following the arguments in [15] and [25], we introduce the space Py of functions (o, m, 1, h) € C=(Q)?*N*+2
such that

S V.=V =0.

- pls =Ylz = 0.
- o(T) = (0) = 0.
- Ahlg = 0.

- (LY (LY + VR)))|s =0, k=0,...,3.
- (Lk e (LY + VA)])(0) =0, k=0,...,3.
We consider the bilinear form
a((@, 7,9, h), (9, 0,9, h))
// LG+ VR =V x (VX)) (L5 + Vr =V x (V x 1)x))dz dt

/ Lile™ P (Ld + V)] - Lyle™*P (LY + V) ldedt + ) // 350 d dt,

Jﬁé wx (0,T)

(G, (@, 7,1, h) //fw cpdxdt—l—//fz dx dt.

Due to (4.2), we have that a(-,-) : Py X Py — R is a symmetric, deﬁmte positive bilinear form on Py. We
denote by P the completion of Py for the norm induced by a(-,-). Then a(-, -) is well defined, continuous and
definite positive on P. Additionally, thanks to the Carleman estimate (4.2) and the assumptions (4.4), the
linear form (¢, 7,9, h) — (G, (p, 7,9, h)) is well-defined and continuous on P. Hence, from Lax-Milgram’s
lemma, we deduce that the variational problem:

and a linear form

{ Find (95 7,1, h) € P such that (4.5)
(( ’(/} h) ( ’7T71/)7 h)) = <G’ ((ID’ 7(-7’(/}7 h))) V((ID77T7,(/)7 h) e P7 .
possesses exactly one solution (&, 7, 1[), h).
Let © be given by
N e— 958
0 = o1,
{ﬁizo,j;ﬁzan (4.6)

It is simple from (4.5) and (4.6) that we obtain

// (J@]? + |2|*)dx dt + Z // 9587 |92z dt < +o0, (4.7)

];ﬁz w><(0 T)
where w and Z are given by

{ W = e BT (LA G+ Vi — V x ((V x ¥)y)),

5= LY em 4 (L) + V). (4.8)

In particular, & € L2(0,T; L?(w)™).
Let (w, 2), together with some pressures (pg, p1), the weak solution of (4.1) with v = 9, that is, they solve

Lo+ Vpo = f¥+ 01, V w=0 in Q,

L2+ Vi = A4+ V x ((Vxw)x), -z2=0 inQ@, (4.9)
w=2z2=0 on X, '
w(0)=0, 2(T)=0 in Q.
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The rest of the proof is dedicated to prove the following exponential decay properties:

etsP” (y )1 mapy € L2(0,T; H2(Q)N) N L>(0,T;V), if N =2,3;
esP" (y¥)=15=15/m s ¢ [2(0,T; V)N L>(0,T; H), it N =2 (4.10)
et B (yr) T8 Is/ms € L2(0,T; H*(Q)*) N L2(0,T; V), if N =3;

which will solve the null controllability problem for system (4.1).
First, we are going to prove that (0, Z) given by (4.8) is actually the solution (in the sense of transposition)

e 4P =0 in Q,
{ e~ (Ly) =% V-2=0 inQ, (4.11)

of

such that

(L)E(T)=0 inQ, (=0,....3. (4.12)

Now, from (4.5), (4.6), (4.8) and (4.9), we obtain for every (p, 7,1, h) € Py

{(ﬁ’;[)fzzo onY, (=0,...,3,

//w e 4B (L o4+ Vi — V x (V x ¥)x dzdt+// Hle=48" (L + Vh)|dz dt
// (L + Vo dxdt—i—//z/) L4 Vi — V x ((V x @)x)) dar dt.
—é/w.(£*¢+wvx ((Vxzb)x))dxdt+é/2~(£w+Vh)dmdt.

From this last equality, we obtain for all (h¥, h*) € L*(Q)*N

//w-hwdxdt—l—//é-hzdxdtz//w-@wdxdt+//2~fl>zda:dt, (4.13)
Q Q Q Q

where (9%, ®*) is the solution of

e~ 4B v = pw in Q,
{ Lyle ™ ®* ] =h*, V- &*=0 inQ, (4.14)
such that §
Ll (e 48 d%) =0 onY, ¢=0,...,3, (4.15)
L (e P ®*)(0)=0 inQ, ¢=0,...,3. ’

It is classical to show that (4.13)—(4.15) is equivalent to (4.11)—(4.12).
Now, let

(w*’po*) = 6455* (7*)—1—1/771(@’130)’ f:f) = 6455* (7*)_1_1/7”]””.
Then, (ws, pox) satisfies
Lw, + Vpge = f¥ 4 28 (v 1=Vl + (e*87 (v) 1=V, V-w, =0 inQ,

w, =0 on 3,
wx(0) =0 in €,

From (4.4), (4.7), (4.11), (2.2) and e**% 4 € L?(Q)N, we have that the right-hand side of this equation
belongs to L?(Q)Y. Using Lemma 2.4, we deduce that w, € L%(0,T; H*(Q)™) N L>(0,T;V).

Finally, to complete the proof of (4.10), we will use the following Lemma whose proof is done in
Appendix C.

Lemma 4.2. e*8" (y*)~14-14/mz ¢ [2(Q)N.
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Now, let

(2 pra) 1= € (V)T (2 ), fE = M () TITIIM(FE 1V < ((V x @)x)).

Then, (2, p1.) satisfies

L2+ Vpre = f2— (07 (y)715718/m)2, V.2, =0 inQ,
2ze =0 on X, (4.16)
z(T)=0 in £,

Next, we are going to study the cases N = 2, 3. Notice that f? can be written as:
f: _ 6—355* (’7*)_15_15/7”(6756* fz) + (,7*)—14—14/mv « ((v % U/*)X) )

If N =2, we have that y = 1o (recall (1.4)). Then, from (4.4), (V x w,)1o € L?(Q)?, and the fact that
e~ 387 (4*)715=15/m and (%)~ 14/™ are bounded, we deduce that fZ € L2(0,T; H-'(Q)?).

If N = 3, since x is a smooth function (recall (1. 5)) we obtain fZ € L?(Q)? from (4.4), and (V x w.)x €
L2(0,T; HY(Q)?).

Therefore, from (4.4), (4. ) (4 11), (2.2) and Lemma 4.2, we have that the right-hand side of system
(4.16) belongs to L2(0,T; H=1(2)?) or L*(Q)? in dimension 2 or 3, respectively. Then, in dimension 2, we
deduce that z, € L2( ,T;V)N L>(0,T; H). Now, in dimension 3, again by Lemma 2.4, we obtain that
2 € L2(0,T; H2(Q)%) N L>(0,T; V). This concludes the proof of Proposition 4.1.

Remark 4.2. Notice that the last part of the the proof of Proposition 4.1 is the first time that the smoothness
of x is used. Fverything else up to this point remains to be true if x = 1o, even for N = 3. The reason to
assume that x is smooth in N = 3 is to obtain extra regularity for z in order to deal with the nonlinearities
of system 1.6. More details are given in Section 5.

5 PROOF OF THEOREM 1.1

Recall that we deal with the following null controllability problem: to find controls v verifying v; = 0 such
that the solution of the system

Lw+ (w,V)w+Vp, =f+vl,, V-w=0 in Q,
L2+ (2,VYw — (w,V)2+Vp, =V x (Vxw)y), V-2=0 inQ, (5.1)
w=0, z=0 on X, ’
w(0)=19° 2(T)=0 in Q.

satisfies z(0) = 0 in 2. We proceed using similar arguments to those in [25], (see also [9, 11, 15, 21]). The

null controllability result for the linear system given by Proposition 4.1 is going to allow us to apply the
following inverse mapping theorem (see [1]):

Theorem 5.1. Let Gy and Go be two Banach spaces and let F : G — Gy satisfy F € Cl(gl;gg). Assume
that g1 € G1, F(g1) = g2 and that F'(g1) : G1 — Go is surjective. Then, there exists § > 0 such that, for
every g' € G satisfying ||g' — g2|lg, < 9, there exists a solution of the equation

]:(g) :glv g € glc
Let us set the framework to apply Theorem 5.1 to the problem at hand. Let

L2(787(0,T); L>()?) x L2(e™F(0,T); H-'(Q)?) if N =2,

Gy = Ei Gy = L
DTN TR L2787 (0,T); L2(Q)3) x L2(e7F7(0,T); L2(9)3) it N =3,

and the operator
Fw,pus 2,p2,v) i=(Lw + (w, V)w + Vpu = vl

L*2+ (2, VHw — (w,V)z + Vp, — V x ((V x w)X)),
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for (w, puw, 2,p2,v) € Gi. Here, u € L2(e™P7(0,T); L?(2)?N) means ¢ u € L?(Q)?". It only remains to

check that the operator F is of class C*(Gy;Gs). To do this, we notice that all the terms in F are linear,

except for (w, V)w and (z, V!)w — (w, V)z. Let us check that these terms are continuous from G; x G; to Gs.
We will study the cases in dimension 2 and 3, respectively.

If N = 2 : Since 438" (y*)~15-15/m 4 € L2(0, T; V)NL®(0,T; H), and e**8” (v*) =1~V € L2(0, T; H*(2)*)N

L>(0,T; V) for any (w, pw, 2, pz,v) € B3, then

6435* (7*)715715/1712: c L4(Q)2,

and
643,8 (,7*)—1—1/mvtw € L4(Q)4

Therefore, for the term (z, V*)w we have:

Hehﬁ*(z,vt)w’

L2(0,T;H~1(2)?)
<C H(e4s[3* (7*)_15_15/7"(2:, Vt)e4s/3* (,y*)—l—l/mw’

L2(Q)?
e4sﬂ* (7*)7171/mvtw‘

)

<C He4sﬁ* (7*)715715/7712,’

L4(Q)? L4(Q)
where we have used that 7 < 8 and (4.3).
Now, we denote:
N
(V- (w®2z)), = Z@j(zjwi), j=1,...,N.
j=1

Observe that, using V- w = 0 in @, the term (w, V)z can be treated as follows:

He“ﬁ* (w,V)z‘

L2(0,T5;H-1(Q)?)
SC 6885* (W*)—15—15/m(w7v>z’

L2(0,T;H-1(22)?)
=C||v - (€4sﬂ* (7*)7171/mw ® 6456* (7*)715715/7712)’

L2(0,T;H=1(9)?)
<C (e4sﬁ* (7*)7171/mw) ® (e4sﬂ* (7*)715715/1%2)}

L*(Q)?
. He4s,ﬁ* (,7*)—15—15/7112‘

<C 643,8* (,y*)—l—l/mw‘

LYQ)? LY(Q)?

then, the continuity follows since 7 < 8 and thanks to (4.3). The term (w, V)w is treated analogously.
If N =3 : Since 8" (v*)~1=Vmw € L2(0,T; H2(Q)%) N L>(0,T;V) for any (w, puw, 2,p.,v) € Ei, and
H2(Q)? C L>(Q)3, we have that:

e™8 (w, V)w‘

L2(Q)®
<C egsﬁ*ﬁ*)*%z/m(w’v)w‘ L2(Q)?
<c (e4sﬁ*(7*)*1*1/mw,V)e“ﬁ*(y*)*l*l/mw‘ 12(Q)*
“c 6435*(7*)_1_1/"1“" oot () ‘6486*(7*)_1_1/meLoo(0,T;V)’

and the continuity follows since 7 < 8 and due to (4.3). Since 38" (y*)=15=15/m4 ¢ L2(0,T; H*(Q)%) N
L>(0,T;V), the terms (w, V)z and (z, V')w are treated similarly.
It is readily seen that F'(0) : G — Gs is given by

F(0)(w, Do, 2,02, v) 1= (Lw + Vpy, —vly, L%+ Vp, — V x (V xw)x)),
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for all (w,pw,2,p.,v) € Gi. It follows that this functional is surjective in view of the null controllability
result for the linear system given by Proposition 4.1.

Now, we are in condition to apply Theorem 5.1. By taking g1 = 0 and g2 = 0, it gives the existence of
0 > 0 such that, if ||eC/tmf||L2(Q)N < ¢, for some C' > 0, then we can find (w, py,2,p.,v) € Gy solution

of (5.1). In particular, v; = 0 and z(0) = 0 in Q. Therefore, the proof of Theorem 1.1 is complete.

6 SOME FINAL COMMENTS

In this section, we will give some final comments about other control problems or related models.

e Possible relations to hierarchical control.

Hierarchical control problems can be found for the heat equation in [3, 2, 4], and for the Stokes system
in [22]. The main similarity between the insensitizing and the hierarchical control problem is that both
problems can be formulated as a control problem associated to a system of equations with a reduced
number of controls. However, in the case of insensitizing controls, the resulting system has a cascade
structure (see (1.6)), which is not the case, for instance, following a Stackelberg-Nash strategy for
hierarchical control. Our approach is strongly based on the cascade structure, so it is not clear that
solving a hierarchical control problem for the Navier-Stokes system would be a direct consequence of
our results.

o Insensitizing control problem for the Navier-Stokes system with Navier-slip boundary conditions.

Although there are local null controllability results with Navier-slip boundary conditions using N — 1
scalar controls (see [20]), the insensitizing control problem with a reduced amount of scalar controls is
an open problem, even the square of the L2-norm of the state as an observation functional. If we try
to follow the strategy in [20], we find that we would need to use the same equation (first equation of
in (1.12)) to estimate both the pressure and the local term of ¢, which would need a different approach
than the one made here and in [20].

e The Boussinesq system reducing scalar controls.

In this case, the control problem is the following:

Yy —Ay+(y-Vy+Vp=f+vl,+0ey, V-y=0 inQ,

0 — A0 +y-VO = fo+ vl in Q,
y=0, 6=0 on X,
y(0) =y + 790, 6(0) =6° + 7o in €.

Here,

[ (0,1) ifN=2
N7 (0,0,1) if N =3,

stands for the gravity vector field, y(z,t) represents the velocity of the particles of an incompressible
fluid, 6 = 0(x,t) their temperature, (vg,v) = (vg,v1,...,vn) stands for the control which acts over
the set w, (f, fo) € L2(Q)N*! is a given externally applied force and the initial state, (y(0),0(0)) is
partially unknown, i.e., y° and 6° are known, while 7, g, and 0o are unknown. We want to insensitize
as observation functional the sum of the square of the L?-norm of the curl y with the square of the
L%-norm of the gradient of @. In this study, the author tries to control with two components fixed at
zero. This work is in preparation, see [32], where the author uses the ideas of [10, 8].

e The primitive equations of ocean.

Considering N = 2, this control problem can be written as:

1
0w — AAv + v + (fo + Bao)vt + p—Vp =T +hl, inQ,
0

V-v=0 in Q,
v=20 on X,
v(0) = vg + T0g in Q.
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Here, v = v(x,t) and p = p(z,t) are the velocity filed and the pressure of the fluid. In this model, A
is the horizontal eddy viscosity coefficient, v is the bottom friction coefficient, pg is the fluid density
and (fo + Bxo)vt is the Coriolis term, with v = (—wvy,v1). In the right hand side, 1,, denotes the
characteristic function of w and T is a given source. The term 70, where 7 € R, represents a small
unknown perturbation of the initial condition vy and h = h(z,t) is a control term to be determined.

Note that if we try to study desensitizing control of this system with a reduced number of components
of the control, our strategy to obtain the Carleman estimate does not seem to work, because the

equations have mixed components due to the term v+ = (—wvq,v1) that appears in the first equation.
However, we can mention the work [14], where the e-insensitizing control for this type of system is
achieved.

e The magnetohydrodynamic system.

The controlled MHD equations (with boundary and initial conditions) we deal with are the following:

1
6ty—1/Ay+(y-V)y+Vp+V<2B2) —(B-V)B=f+x,u inQ,

OB+nV x(VxB)+(y-V)B—(B-V)y=P(x,v) in Q,
V.y=0, V-B=0 in Q.
y=0, B-n=0, (VxB)xn=0 on X,
y(0) = yo, B(0) = By in Q.

Here, y = (y1,¥2,y3) : © x [0,T] — R? is the velocity vector field, p : Q x [0,7] — R is the (scalar)
pressure, and B = (By, B, B3) : Q x [0,T] — R? is the magnetic field. The vector functions u =
(uy,uz,uz) : Q x [0,T] — R® and v = (vy,v9,v3) : Q x [0,T] — R3 are the controls, and x,, is the
characteristic function of w. We denote the variables of the functions y, p, B, u, and v by © = (x1, 2, x3)
(belonging to ) and ¢. The vector function f : (f1, fa, f3) : 2 — R? is the know density of the external
forces, and the vector fields yo : Q2 — R3 and By : Q — R3 are the given initial velocity and magnetic
fields, respectively. The operator P is the Leray projector.

Although there are controllability results for this system, see [24, 5], a possible problem could be
control to the trajectories with reduced scalar controls. However, notice that the simpler problem of
the controllability to the trajectories of the Navier-Stokes system with N — 1 scalar controls is still
open. On the other hand, following our approach, if we linearize around zero, we find a decoupled
system, which means that both control u and v would have to be active. Nonetheless, it seems plausible
to believe that an insensitizing control result for this system could obtained if both control u and v are
allowed to be active, even if only some of their components.

A  PROOF OF LEMMA 2.3

Before we begin, we present a Carleman estimate which is proved in [9], which we are going to use in its
proof, and it is as follow:

Lemma A.1. There exists a constant Ao, such that, for any A > Ao there exist two constants C(\) > 0 and
s0(A) > 0 such that for any i € {1,...,N}, any g € L*(Q)N and any ug € H, the solution of

—Au+Vp=g, V-u=0 inQ,

u=0 on X, (A.1)
satisfies
// —13sa™ |u| dedt < C // —1lsa™ |g| dz dt + 872 // —2sa4—11sa* (5)7‘uj|2d$dt ,
];l wx(0,T)

for every s > sq.
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We are going to develop here the duality method introduced in [27] in the context of the heat equation.
The same argument has already been used in the context of the heat equation with nonhomogeneous Robin
boundary conditions in [15] and in the context of the heat equation with right-hand side belonging to
L2(0,T; H=2(Q)) N H~1(0,T; L*(Q)), wich only permits to talk about solutions in L?(Q); this is explained
with detail in [16].

Proof. First, we view u as a solution by transposition of (2.3). This means that u is the unique function in
L?(Q)N satisfying

é/ugdxdtzé/ﬁ@dxdt_é/fl.wdxdﬂg/u%(o)d% Vo e IO, a2

where we have denoted by ¢ € L2(0,T; H*(Q)N N V) N HY(0,T; L*(Q)Y), together with p,, the (strong)
solution of the following problem:

—¢t = Adp+Vpy =g, V-¢6=0 inQ,
=0 on X, (A.3)
$»(T)=0 in Q.

Let us first get an estimate of the lower order term in the left-hand side of (2.4), i.e.

st e 13507 () |uf2da dt. (A.4)
J

Let us introduce the space
Zy ={(¢,ps) €C*(Q) x C*(Q): ¢ =00n X and V- ¢ = 0 in Q}

and the norm || - ||z, with

H(Qapg>||2z _ //e—llsa*mt —AQ+VpQ|2d$dt+S7 // 6_236‘_118()‘*(5)7“@1,O)|2d$dt,
Q )

wx (0,T
for all (g, p,) € Zy. Due to Lemma A.L, | - ||z is indeed a norm in Zy. Let Z be the completion of Z, for
the norm || - ||z. Then Z is a Hilbert space for the scalar product (-,-)z, with

(CHBRCR ) =// e 15 (0, — Ao + Vpo) (v — Ay + Vp,)dz dt

Q
+S7 // 6725&7115&*(5)701’}/1d1’dt.

wx(0,T)
Then, using Lax Milgram’s Lemma there is a unique solution (7, p5) € Z such that

((5—7256)’ (Japo'))Z = l(0—7p0’)a V(Japa’) € Zv (A5)

where

(0, ps) = s // e 1357 (¢ yoda dt.
Q

By virtue of Lemma A.1, one can easily check that [ € Z’.
We define: .
{ = e M (5, — AG + Vp5),

— _876—2sé—1ls(x* (6’1,0). (A6)

SRS
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Recall that & = (51, 52). Then, (¢, ) is solution of (A.3) and such that
1@,52)|% = ((7,95), (7, 95))z = 17, Ps).
Let us now take g = s*e 135" (¢*)% + 91, in (A.2). This gives
st // e 13597 ()4 |y|2da dt = // fodda dt — // f1 - Vodz dt — // utdz dt, (A7)
Q wx(0,T)

(recall that © and ¢ are given by (A.6)).
From (A.5), we obtain

1@, 5)11% < Uz 117, 55)|z-

Consequently,
|(7,P5) // Hse™ | 32de dt 4 77 // Zsatllsa” 151200 dt < C's? // ~13sa” (e |y 2dz dt,  (A.8)
wx(0,T)
for s > C =C(Q,w,T) > 0, since
1/2
iz <5 [ e @) Pz ar
Q

77e2s&+115a

Now, we multiply the equation satisfied by (2) by s (é )’7¢A> and we integrate in (). After integration

by parts, we get:

577 eZsziJrllsa* (5)77|V(lg|2dl‘ dt = 25a+115a ( ) )|¢| da dt
ot
J e

+S_3 // 625&+65a* (é)—?,uq;dx dt + 8—7 // 623&+113a* (éc)—’?@édx dt. (Ag)
Q

wx(0,T)

Using Holder’s inequality and Young’s inequality in the last two terms of the right-hand side of (A.9), we
have

877 // 62S&+118a*(£)77|vq3‘2d$dt <C // ellsa*|qgl2dxdt
Q

wx (0,T)

// —18sa” (e Yy 2dz dt |

where we have taken s > C. This inequality, together with (A.8), provides

// ellsa*|$|2d$dt+s—7 // 623(34+113a* (é)_7|V(£‘2d.’L‘dt
Q
577 // // —18sa” (ey4 )y 2dz dt. (A.10)

wx(0,T)
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A combination of this inequality with (A.7) yields the following estimate

// —13sa* |U|2d1'dt <C // —11sa® |f \2dxdt+s // —11lsa®

)| f1]2dx dt

=3 // e~ 2sa et (VT 2 da dt | (A.11)
J 7&1“(01)
Let us now show that the term associated with Vu can also be bounded in the same way. To this end
we multiply the equation of u by
53671350‘* (6*)371/771

and we obtain

3
%// —13sa* (¢ )3 1/m |u| dzdt + 3 // —13sa* 3 1/m|Vu| de dt
Q
Q

y3=Ym g Vudz dt. (A.12)

Now, integrating by parts with respect to ¢ in the first integral of the left-hand side of (A.12) and using that

(67135(1* (5*)371/m)t < 056713504* (5*)47

s> C,
we have at this moment,

o

ol?dz dt

\u|2dxdt+ s // e~ 13sa” (5*)3‘1/"’\Vu\2dmdt <C // e~ sa”
Q Q

+57//e—11w 7111 dxdt+s7z // “2sa-lsat (T 2 dedt |, (A.13)
Q

j#zwx (0,T)
On the other hand, we consider

i = 56713/2504*(&*)171/771“ — p4(t)u 7.

. hi= 56713/25a (5*)171/mh — p4(t)h.
Then, (4, iL) satisfies the following system
u —Aﬁ—i—Vﬁ:—(p4)tu+p4f0+p4v-f1, V-u=0 1inQ,
u=20 on Y,
4(0) =0

(A.14)
in €.
Applying certain regularity result and using L?(2)

C H Y)Y, we have that

@l 220,01 @)y + 1AlI720) < C (||p4f0||2L2(Q)N + llpafillZz gy + ||(p4)tu||%2(Q)N)

for some C' > 0. Then, since |(ps);| < Cs?e™13/2507 (¢*)2 we can add the term associated with the pressure
to the left-hand side of (A.13). Finally, we obtain (2.4)

O
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B PROOF OF PROPOSITION 3.2

In this occasion, we will prove the Carleman estimate of ¢ following a method introduced in [12]. For
simplicity of the proof, we will consider the case N = 2 and 7 = 2.

Proof. First, we apply the divergence operator to equation associated with ¥ to obtain
Ah=V . ¢¥=01in Q.
Then, applying the operator VVVAZ(+) to the equation satisfied be 11, we have:
(VVVA%)), — A(VVVA%Y,) = VVVAZGY.

Thus, we can apply Lemma 2.1 to this equation to obtain

// e 105 <31§1 |[VVVVA2Y, |2 + 6| VV VA%, 2) dz dt
Q

(H —1/4=5sag= 1/4+1/mVVVA21/)1‘ +H5_1/4€_5SQ£ 1/4VVVA21/)1H

L2(%)8 H1/4.1/2(%)8

+s // 109&£|VVVA2w1|2dmdt+// “10s0 172 A2gY 2dzdt |, (B.1)

wo X(O T)

for every s > C.
We divide the rest of the proof in three steps:

e In Step 1, we estimate globals integrals of 11 y 12 by the left-hand side of (B.1).
e In Step 2, we deal with the boundary terms en (B.1).
e In Step 3, we estimate all the local terms.

In the following, C' denotes a constant depending only on A, Q, w, O y £.

Step 1

Estimate of ¥ : Applying successively Lemma 2.2 with » = 1 and u := VVAZy, r = 3 and u = VAZy,,
r =5 and u = A%¢;, and combining with (B.1), we get

st / / e 1052~ Y VYV VA2, |*de dt+-s / / e 105V VYV A%y [2de di+s? / / e 10503 1YV A% |2da dt
Q Q Q

+s // —10@(1§5‘VA2,¢1‘ dxdt—I—s // —1090{57‘A2,¢1| dzdt< C H —-1/4 —590/5 1/4+1/mVVVA2,(/}1‘

LQ(Z)B

+“5*1/46*55‘)‘5*1/4VVVA2¢1HH%%(E)JS / / e~ 1050 | TTV A, 2z di+s° / / e~ 1050317V A4, [z dt

wo X (0,T) wo X (0,T)
// 7105a55|VA2,¢1|2d1,dt +S // 7108&57|A21/11|2d{£dt+// 7108Q|V2A2 ¢\2dxdt ’
wo % (0,T) wo % (0,T)

(B.2)

for every s > C.
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FEstimate of 12 : Now, we would like to introduce in the left-hand side a term in 1) = (¢1,12). Actually, we
are going to add the term Hs7/2 —Bsa” (gx 7/2wHL2 0T H2(Q)N) to the left-hand side of (B.2).

Notice that, since V - ¢y = 0 in ), we have for all t €(0,7T):

/|32 V2)4 |d$—/|31 Y1) ()P da

(B.3)
< / V()b 2d.
Q
Since (¥2):(t)|on = 0 and Q is bounded, also, using (B.3), we have
/| )¢ (t)]?dz < C/ |V (1) (2)]?dee.
Then, we deduce
2 2
[Ve L2 < CIV (1))l p2qpn > VE€ (0,T). (B.4)
Consider now the following Stokes system,
—A¢p+Vh=—+g¥ inQ,
V-=0 in Q, (B.5)

Y =0 on 0f2,
then, using a regularity result of [37] for the stationary Stokes problem (B.5), together with (B.4), we obtain
2
IOy < € (IV@: O + 197 @2y ) » V€ 0.T). (B.6)

Now, observe that using the divergence free condition and applying the laplacian operator to the equation
associated with 11, we get that (A ), = A%y + quf in Q. On the other hand, since (¢1)¢|aq = 0, we have

I@)ellzr2g0) < CIAWl 2oy - (B.7)
Using (B.7) in (B.6), we obtain
[Ny <C (18261 (02 + 140" 1) 320y ) ¥t € (0,T).
Finally, since a* and £* do not depend on the space variable z, we have that

37/ 10seT (g2 H¢||H2(Q)N dt <Cs' // —10sa” (eI A2y [2d dt

0

+//e—108a*(5*)7|Agw\2dxdt . (B.8)

Q
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Therefore, combining (B.2) and (B.8) we get

st / / e 1050¢ =1y YVV A2y, |?de dt+5 / / e 1050¢ | YV V A%y |2da dt+s3 / / e 105231V A%y |2da dt

s // 10505 [T A2, B d + 57 // 1050 gT A2y [ dt + 57 // 1000 (£5)7 | 2l dt

17 //6—10sa (&) |VePde dt + s7 // —10sa" (47| Ay dz dt < C H —1/4=5sag- 1/4+1/mvva2,¢1‘

L2(Z)8

+Hs‘”“e‘““é‘l/‘*VVVA%lHHA,A(E)S+s // e~ 1050¢ | TTV A2y, [2de dt

wo x (0,T)

// e 10503\ WV A%, |2de dt + s° // e 10505 | VA% [Pda dt + 57 // e 10T A2y |2 d dt

LL)()X(O,T) wOX(O,T) ng(O,T)

s // —10sa2 |GV A2¢Y | 2de dt + 57 // —L0seT (e AgY2dadt |, (B.9)

for every s > C.

Step 2

In this step we treat the boundary terms in (B.9). We begin with the first one. Notice that the minimum of
the weight functions e** and ¢ is reached at the boundary 02, where a = o* and £ = £* do not depend on
x. Since m > 14, and using Young inequality, we obtain

He—ssa* (5*)—1/4+1/mVVVA2w1H;(E)S

<C H —5sa” vvvﬁwl‘

L2(Z)8

<C <Hsl/ze55a* (£*>1/2WVA2¢1’ o

)

<C|s! / / e 1052¢ "Iy VVVAZY, |?dzdt + s / / e 105 VYV A%y, |2 da dt
Q

] S G R A 7SOl

i Hefssa* ¢ )1/2VVVA2¢1

Therefore, this boundary term can be absorbed by left-hand side of (B.9) for s > C.
Now, we deal the second boundary term in the right-hand side of (B.9). To this end, we use regularity

estimates.
First, notice that ||s7/2e=%5" (¢* )7/21/J||L2(0 vy = = ||s7/2e557 (€*)7/29)||%, is in the left-hand side of (B.9).
Let us define

(@', hn) i= 82675507 (€27 (g, h) =2 &4(8) (4, h).

Then, from (3.3), (¢!, h1) is the solution of Stokes system:

Of =AY+ Vhy = (&) +&g¥, V-yp'=0 inQ,
Pl =0 on %, (B.10)

$H(0) =0 in Q,

Using Lemma 2.6 for the last system, we have

111, < € (lE)wl, + 6, )
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From (2.1), we see that
[(€1)¢] < CsT/2e057 (£%)7/2,

for every s > C. Thus, we obtain

. 2
le”i{l < C( 57/2675304 (6*)7/2wHX0 4 Hflgd’HiO) .

Next, we introduce:
(1% ha) = s*2e2 (61272 (4, h) = &4(1) (¥, ).
Now, from (3.3), (12, hy) is the solution of Stokes system:
V7 — AY? + Vhy = (&) + &29%, V-4 =0 inQ,
2 =0 on X, (B.11)
»2(0) =0 in 0,
Using Lemma 2.6 for the last system, we find:

0213, < € (I€)wl, +leg 1%,) -

Using the estimate
|(£2)t‘ S 085/26_5SC¥ (5*)5/2_1/7”’

for every s > C. Thus, we obtain
. 2
Hw2H§(2 <C (Hss/Qe—ssa (g*)5/2—1/m¢HX1 + HgngH;) _
. 2
<C ("87/26_55a (g*)7/2¢H + ||519w”§<0+H§29w’|§<1>~
Xo

Next, we define:
(1%, ha) 1= 1727507 (€23 (3, h) =2 &5(1) (1, h).-
Then, from (3.3), (13, h3) is the solution of Stokes system:
PP — A3+ Vhy = (&)1 + &39%, V-¢2 =0 inQ,
YP3=0 on ¥, (B.12)
¥3(0) =0 in Q,
Using Lemma 2.6 for the last system, we get:

1915, < € () wl, + €a”1y,)

Using the estimate
[(&3)e] < Cs3/2e— s (f*)3/2*2/m’

for every s > C. Thus, we obtain
1%, <€ (21, + lless® 1%, ) -
. 2
<c (Usmww @)+, + les® |, + ||szgw||;) :

Next, we introduce:

(" ha) = 571272 () TR (g, h) =2 () (4, h)-
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Then, from (3.3), (1%, hy) is the solution of Stokes system:
Vi — APt + Vhy = (L) +&ag?, V-9*=0 inQ,
Pt =0 on X, (B.13)
»(0) =0 in 0,

Using Lemma 2.6 for the last system, we find:

l04[1%, < € (IEnwlk, + &g’ ],)

Using the estimate
|(€4)t‘ S 081/26_5506 (5*)1/2_3/7”’

for every s > C. Thus, we obtain
041, < (I¥°I1%, + eI, )
<c (s @]+l I, + leas® Iy, + leas® I, + s I, )-
Then, using interpolation argument between the spaces X3 and X4, we get

. 2
He—5sa (E*)—7/(2m)¢‘ .
L2(0,T;H8(Q)N)NH (0,T;H6(Q

- <C (H81/26—5sa* (5*)1/2—3/mw

X3

W)

) Hs—l/Qe—Ssa*(5*)—1/2—4/1’71,1[)’

Now, we consider the boundary term

$-1/2 He—am* ()" VIVVV ALY, Hi{l/u/?(z)s

2

< —1/2‘ —5sa” (ex\—1/4 2 ‘
C <3 ‘e ()77 VVVA 1/J1‘ H(0,T;H-1(Q)N)

4 os1/2 H675sa*(§*)71/4vva2¢1’

2
LZ(O,T;H1<Q>N)> '
2

<C (31/2 “6755&*(5*)71/41?1‘

L2(0,T;H8()N)

—1/2 || ,—bsa™ ¢*x\—1/4 2
e G| )

H'(0,T;HS()N)
2

—Os /2 He—5sa*(£*)—1/4w1‘

L2(0,T;H3(Q)N)NH(0,T;HO (Q)N)

. 2
<Cs1/2 H675sa (g*)ﬂ/(zm)w‘ '
L2(0,T;H8 (Q)N)NHL(0,T;H6(2)N)

(B.14)

By taking s large enough in (B.14), the boundary term s—1/2 ||6_58(16_1/41/1”H1/411/2(E)16 can be absorbed

by the term He“r’so‘* (5*)_7/(2m)1/)Hi2,( ) and step 2 is finished.

0,T;H(Q)N)NH (0,75 HO ()N
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Thus, at this point we have

st / / e 1050y VVVAZY, [Pde dt + s / / e 1050 | VYV A% |2 da dt
Q Q

+ 57 // e 10| VVATY, P dt + 57 //e_103a£5|VA21/)1|2da:dt+s7 // e 10T A%y [Pdz dt
Q Q Q

+S7 //67108a*(f*)7|”(/}|2d(£dt+37 //67108&*(5*)7|V’L/)|2d$dt+57/\/67105&*(5*)7|Al/}|2d2dt
Q Q Q

s / / e 105 VYV A%, Pde dt + s° / / e 10523V V Ay, |2 da dt

(.d()>< OT wo X OT)

// e 10505 T A2y, [2dz dt + 57 // e 10T A2y |2da dt + 57 // ~10sa” ()T Ag¥ P da dt

wo % (0,T) wo x (0,T)
15T / / 0 TV A2 Rdr dt + |Eag? I, + 600”12, + 1€9¥ 1%, + ||s4gw||%(3) . (B.15)
Q
for every s > C.

Step 3

In this step, we estimate the first three terms in the right-hand side of (B.15) in terms of A%¢; and small
constants multiplied by the left-hand side of (B.15).

We start by estimating the term on VVVAZ2y;. Let w; be an open subset satisfying wy € w; € @ and
let p; € C%(w;) with p; =1 in wp and 0 < p;. Then, an integration by parts gives

s // e 100 | VYV A%y, [P dedt <s // pre” 100 | VWV AR, [* du dt.

wo X (0,T) w1 % (0,T)
=—5 / / pre 105 eV VA% (VVVVAZY, )da dt
(JJ1><(0 T)
/ / pre190¢) [VVV A%y, [* da dt.
w1 >< 0 T)

Using the Cauchy-Schwarz’s inequality for the first term and property (2.2) for the second one, we obtain
for every € > 0

/ / e 100 | VYV A, [* do dt <Cs® / / e 105063 | WV A%, |* du dt
wo % (0,T) w1 % (0,T)

(B.16)
es // e t0sag—l |VVVVA21/)1|2dx dt,

for every s > C' (C depending also on €).
Repeating the same argument we can obtain the estimates of VV A%, in terms of VA2, and VA%,
in terms of A24);, namely

/ / 105063 | YV A%, | de dt <Cs° / / 105065 |V A%, |* da dt

UJ1><(OT) wa X OT)

(B.17)
+es / / e 1050¢ VYV A2, | du dt,
Q
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85 // e—lOsa§5 |VA2¢1’2 dz dt SOS7 // 6_108a57‘A2¢1|2d$dt

w2 % (0,T) w3 % (0,T)

(B.18)
+es® / / 105063 [TV A%, | da dt,
Q

for every s > C (C depending also on €), where w) € ws € w3 € &.
This estimate, together with (B.15), (B.16) and (B.17), readily gives the desired Carleman inequality
(3.4). This concludes the proof of Proposition 3.2. O

C PRroor or LEMMA 4.2

We are going to prove that e*s8” (y*)~14=14/m2 ¢ 12(Q)N using a method introduced in [10], which consists
of increasing the regularity of the function Z through certain weight functions involved in order to then be
able to apply a local inverse theorem in a sufficiently regular space (more details, see Section 5).

Proof. Next, we define the following functions:
(22,0s Pr0) 1= €0 ()27 (2 ), fEg = e (37) TPV 4V x (W x b))
Notice that f7, € L?(0,T; H~*(€2)"), since this function can be written as:

Fro=e Py )T - (v) YTV X ((V x wi)x)

)

where e=3%8" (y*)=5=5/™ and (y*)~*%/™ are bounded; also, using (4.4); in dimension 2, we can consider
x = 1o, then (V x w,)1p € L*(Q)?, and, on the other hand, in dimension 3, we have that (V x w,)x
belongs to L?(0,T; H'(2)3), and as H'(2)3 C L*(Q)3, we obtain (V x w.)x € L?(Q)3.

Then, by (4.9) z. o satisfies

£*2*70 + Vp*’o — f*Z,O _ (€4SB* (V*)—5—5/M)t2, V- 2y = 0 in Q,

2x0 =0 on X,

Z*7O(T) = O iIl Q7
where the last term in the right-hand side can be written as

(M9 (77 7575/m) 2 = eg(8)( L) 2,
where ¢, (t) denotes a generic function such that (see (2.2))
(1)) < C < 00, VE=0,....k. (C.1)

On the other hand, for any h € Y3, we obtain

w0 - hdzdt = 0, D dadt — (L)% Z - ddede, 2
//Z 0 e //< 0 >L2<0,T;H71<9>N>,L2<0,T;Hg<szw> v //04( JE)mz - 2dw (©2)
Q Q

Q

where ® solves, together some pressure 7,

LO+Vrg=h, V-®=0 inQ,
®=0 on %,
®(0)=0 in .
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Using (4.12), we can integrate by parts to obtain

w0 - hdzdt = 0, P dadt — L322 (Lea(t)D t)h))dz dt,
//z o // (£ >L2(o,T;H—l(mN),L?(o,T;H&(Q)N) ) //( )2 (La()2] + VieDh)dr
Q

Q
// * 07 dzdt
L2 0,T;H— (Q)N),L2(O,T;H3(Q)N)
/ / (02 + £ (102] + LD (1)8] + L2 (0)@] + £2[ea(1)h] ) da di.

Notice that here we have relied on the fact that £3,;Z, ® and h belong to the space H. Since
[y, < Cllly, -

(see regularity result (2.7)), we obtain from the last equality, together with (C.1),

// Zy0 - hdz dt < C’[Hff’OHLQ(O’T;H_I(Q)N) + ||2||L2(Q)N} |hllyso, VhEYsp. (C.3)

Now, let
(2e1,pan) 1= €77 (y) 7070 (3, p1), f24 = et (y) TV 4V X (W x d)X)).
Similarly as before, (z. 1,p«,1) satisfies
»C*Z*,l + VP*,l = f:,l - (648[3* (7*)7979/m)t2; V N Z*,l - 0 in Qv
Ze1 =10 on X,
2*71<T) =0 in Q7
Thus, for any h € Y3 o, we get

1 hdzdt = : ,<I>> dzdl — 458 (1) =9-9/m) > . Bl dt.
//z 1w // <f*’1 L2(0,T;H-1(Q)N),L2(0,T; HL (Q)N) ’ // (07 JiZ - @dw
Q Q

Q

// 456 -9— 9/m)tz ddr dt = //c3 )P - z, pda dt.

using (C.3) with ¢3(t)® instead of h (notice that c3(t)® € Y370), we get the estimate

Moreover, since

[[ e zeadodt < €[Ifzollzom o, + [l lea®ls

Going back to 2,1, we have
//z*ﬁl-hdxdt < C[HffOHL2(0TH vy T HzHLz(Q)NwI)HYW
Q

where we have used (C.1) and the property (v*)~9=%/™ < C/(y*)~>~%/™. Taking into account that

1®]lys < CliAllyao;

(see (2.6)) we obtain

// 2ur - hdzdt < O 2oz urar-r ) + 122 | Bllvaer VA € Yoo, (C.4)

30



Now, let
(2*527p*’2) — 6455* (7*)_12_12/7”(2»151)7 f:,2 — 648’6* (7*)—12—12/m(fz 1V x ((v % ?f})X))
Analogously, as before, (2. 2, ps 2) satisfies

L%+ Ve = ff,g _ (643[3* (,y>k)—12—12/m)tzc7 V-zio=0 inQ,
Zx =0 on X,
22(T) =0 in €,

Thus, for any h € Y] o, we obtain

o hdzdt = < : ,q>> d dt—// 458" (4*)=12-12/m) 2 Py dt.
//Z 2 e // Jez L2(0,TH-1 (@)N), 120, T HY@)N) (€0 2 @dz
Q Q Q

Moreover, since

// (e*8" (y*) 712712/ 2 Bda dt = //CQ(t)CI)~z*70dxdt.
Q Q

using (C.4) with c(¢)® instead of h (notice that co(t)® € Ya0), we get the estimate

[[ stt@ - zodwat < I8 llsominsim) + 2] a2l
Q

Turning back to z, 2, we get

[[ 2z nazat < 1z romns o + el 18]
Q

where we have used (C.1) and the property (y*)~'2712/™ < O(y*)~9=9/™_ Taking into account that
1®]ly, < CliAllyi,,

(see (2.6)) we obtain

// 2un - hdzdt < O 2ol xrar-r ) + 122 | bllvie: Vh € Yio. (C.5)
Q

Finally, we set
(20,3, Pa3) 1= €07 (V)T (2, py), S = P (3T (£ 4V X ((V x d)x)).-
Similarly as before, (z. 3, P« 3) satisfies
L2034 Vpes = fig— (€27 (y*) 717 1/m) 2, V.2,3=0 inQ,
zx3 =0 on X,

Z*,3(T> =0 n Q

Thus, for any h € Yj, we obtain

v hdzdt = < 2B dzdt — 4567 () =U=14/m) 2 g dt.
//Z 81 AGE // fes >L2(0,T;H—1(Q)NLLZ(O,T;H(%(Q)N) v // (™) Jif - @de
Q Q Q

Moreover, since

// (357 (y*)~H=1/m) 2 $dp dt = //cl(t)cb-z*,odxdt.

Q Q
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using (C.5) with ¢;(¢)® instead of h (notice that ¢1(t)® € Y1,9), we get the estimate

[[ @@ sadodt < €[Ifzollzomam + [l la®Ols .
Q

Turning back to z, 3, we obtain

[ a- nawat < {1z lino o + Iellsars 12l
Q

where we have used (C.1) and the property (y*)~ 1414/ < C(y*)~12712/™  Taking into account that
HCI)”YLO < CHh”Ym

(see (2.6)) we obtain

// ze3 - hdrdt < O fEollL20,mm-1 @) + HgHL?(Q)N} [hlly,,  Vh € Y.
Q
Thus, we deduce that z, 3 € L2(Q)". The proof of Lemma 4.2 is complete.
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