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Abstract

In this paper we study an insensitizing control problem for the Navier-Stokes system. The novelty is
that we insensitize the rotational of the solution using controls with one component fixed at zero. This
problem can be formulated as a null controllability problem for a nonlinear cascade system for which we
follow the usual duality approach. First, we prove a suitable Carleman inequality for a system coupling
two Stokes like equations, which leads to the null controllability at any positive time. Finally, we deduce
a local null controllability result for the cascade system by a local inverse argument.
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1 Introduction

Let Ω ⊂ RN (N = 2 or 3) be a bounded simply-connected open set whose boundary ∂Ω is regular enough.
Let T > 0 and let ω ⊂ Ω be a (small) nonempty open subset which will usually be referred as control domain.
We are going to use the notation Q = Ω × (0, T ) and Σ = ∂Ω × (0, T ). Let us also introduce another open
set O ⊂ Ω which is called the observation set.

Let us remember the definition of some usual spaces in the context of incompressible fluids:

V = {y ∈ H1
0 (Ω)

N : ∇ · y = 0 in Ω}

and
H = {y ∈ L2(Ω)N : ∇ · y = 0 in Ω, y · n = 0 on ∂Ω}.

To be more precise about the investigated problem, we present the following control system with incomplete
data:  yt −∆y + (y,∇)y +∇p = f + v1ω, ∇ · y = 0 in Q,

y = 0 on Σ,
y(0) = y0 + τ ŷ0 in Ω.

(1.1)

Here, y(x, t) = (yi(x, t))1≤i≤N is the velocity of the particles of an incompressible fluid, v = (vj)
N
j=1 is

a distributed control localized in ω, f(x, t) = (fi(x, t))1≤i≤N ∈ L2(Q)N is a given, externally applied force,
and we have denoted (

(y1,∇)y2
)
i
=

N∑
j=1

y1j∂jy
2
i , i = 1, . . . , N.
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The initial state y(0) is partially unknown in the following sense: we suppose that y0 ∈ H is known, ŷ0 ∈ H
is unknown with ∥ŷ0∥L2(Ω)N = 1 and that τ is a small unknown real number.

The objective of this study is to prove the existence of controls that insensitize some functional Jτ
depending on the velocity field y. In other words, we have to find a control v such that the influence of the
unknown data τ ŷ0 is not perceptible for our functional:

∂Jτ (y)

∂τ

∣∣∣∣
τ=0

= 0 for all ŷ0 ∈ L2(Ω)N such that
∥∥ŷ0∥∥

L2(Ω)N
= 1, (1.2)

In the important work [30], J.-L. Lions considers this kind of problem and introduces many related
questions. One of these questions, in non-classical terms, was the existence of insensitizing controls for the
Navier-Stokes equations.

In this work the idea of using a new observation functional arose, which was related to the notion of
curl. As a motivation the rotor or rotational physically measures the rotation in the movement of a fluid,
in this case (1.2) means that a small perturbation in the initial condition does not alter (desensitize) the
rotation in the movement of the fluid. For example, the curl is involved when an airplane suffers turbulence
during a flight because it can measure the chaos that is generated behind the wings of the airplanes, or
when turbulence is generated at the rudder of a ship, see [23, 41, 33]. In the literature the usual observation
functional is given by the square of the local L2-norm of the state variable y (see [6, 29, 36]). Here, the
functional is given by the square of the local L2-norm of the rotational of the state variable y, that is:

Jτ =

∫∫
Q

|∇ × y|2χdxdt, (1.3)

where χ : Ω → R is a bounded function such that supp(χ) ⋐ O, 0 ≤ χ ≤ 1 and χ ≡ 1 in an open set O0

with O0 ⋐ O. Actually, for some technical reasons described below, we will assume that

χ = 1O if N = 2, (1.4)

where 1O is the characteristic function of O, and

χ ∈ C∞
0 (O) if N = 3. (1.5)

The relevance of taking χ as (1.4) or (1.5) is explained in Remark 4.2.
The first results of existence of insensitizing controls were obtained for the heat equation in [6, 39]. Both

papers are concerned as functional the local L2−norm of the state.
An important topic in the control theory is controllability with controls having some vanishing components,

which can be an interesting problem from an applications point of view. The first studies were obtained in
[17] for the local exact controllability to the trajectories of the Navier-Stokes and Boussinesq system when
the closure of the control set ω intersects the boundary of Ω. Then, this geometric assumption was removed
for the Stokes system in [12], for the local null controllability of the Navier-Stokes system in [9], and for
the Boussinesq system in [7]. Recently, the local null controllability of the three dimensional Navier-Stokes
system with a control having two vanishing components has been obtained in [13].

Now, related studies with insensitivity for fluids, the first result was obtained in [31], where the author
prove the existence of ϵ-insensitizing controls of the form (v1, v2, 0) for the 3D-Stokes system. Later, the
existence of insensitizing controls for the Stokes system is demonstraded in [19] and for the Navier-Stokes
system in [21]. Finally, in [11], the existence of insensitizing controls for the Navier-Stokes system with one
vanishing component was established. The present paper can be considered as a continuation of this last
study. The main goal is to establish the existence of insensitizing controls for the Navier-Stokes system (1.1)
having one vanishing component, that is, vi ≡ 0 for any given i ∈ {1, . . . , N}. Notice that if N = 2, this
means v ≡ 0. Also, here we are going to use a functional not usual in the literature.

The special form of the observation functional Jτ allows us to transform our insensitizing problem
as a controllability problem of a cascade system (for more details, see [6], for instance). In particular,
condition (1.2) is equivalent to z(0) = 0 in Ω, where z together with w solves the following coupled system:

wt −∆w + (w,∇)w +∇pw = f + v1ω, ∇ · w = 0 in Q,
−zt −∆z + (z,∇t)w − (w,∇)z +∇pz = ∇× ((∇× w)χ) , ∇ · z = 0 in Q,
w = 0, z = 0 on Σ,
w(0) = y0, z(T ) = 0 in Ω.

(1.6)
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Here, (w, pw) is the solution of system (1.1) for τ = 0, the equation of z corresponds to a formal adjoint
of the equation satisfied by the derivate of y with respect to τ at τ = 0 and we have denoted

(
(z,∇t)w

)
i
=

N∑
j=1

zj∂iwj , i = 1, . . . , N.

In effect, differentiating y solution of (1.1) with respect to τ and evaluating it at τ = 0, condition (1.2) reads∫∫
Q

yτ · ∇ × ((∇× w)χ)dx dt = 0, ∀ŷ0 ∈ L2(Ω)N such that
∥∥ŷ0∥∥

L2(Ω)N
= 1, (1.7)

where yτ is the derivate of y solution of (1.1) at τ = 0. Then, yτ solves
yτt −∆yτ + (yτ ,∇)y + (y,∇)yτ +∇pτ = 0 in Q,
∇ · yτ = 0 in Q,
yτ = 0 on Σ,
yτ (0) = ŷ0 in Ω.

(1.8)

Hence, substituting ∇× ((∇× w)χ) by the left-hand side of the equation of z in (1.6) and integrating by
parts we obtain∫

Ω

z(0)ŷ0dx =

∫∫
Q

yτ · ∇ × ((∇× w)χ)dxdt, ∀ŷ0 ∈ L2(Ω)N such that
∥∥ŷ0∥∥

L2(Ω)N
= 1. (1.9)

Combining (1.7) with (1.9), we deduce that z(0) = 0 in Ω.
We are going to prove the following controllability result for system (1.6):

Theorem 1.1. Let i ∈ {1, . . . , N}, m ≥ 14 be a real number, and χ : Ω → R given by (1.4) if N = 2, or
(1.5) if N = 3. Assume ω∩O ≠ ∅ and y0 ≡ 0. Then, there exist δ > 0 and Ĉ > 0 depending on Ω, ω, O and

T such that for any f ∈ L2(Q)N satisfying
∥∥∥eĈ/tmf∥∥∥

L2(Q)N
< δ, there exists a control v ∈ L2(ω × (0, T ))N

with vi ≡ 0 and a corresponding solution (w, z) of (1.6) satisfying z(0) = 0 in Ω.

Remark 1.1. Besides, respect to insensitizing the functional Jτ one can lead the state w to 0 at time t = T
just by assuming an extra condition on f at time t = T∥∥∥e Ĉ

tm(T−t)m f
∥∥∥
L2(Q)N

< +∞, (1.10)

for a constant Ĉ probably different to the one shown in Theorem 1.1.

Remark 1.2. The condition y0 = 0 in the main theorem is due to the fact that the first equation in (1.6)
is forward and the second one is backward in time. Other works related with insensitizing controls in the
parabolic case, including linear equations, assume this condition on the initial data. A study of the possible
initial conditions which can be insensitized is made for the heat equation in [40]. This work shows that the
answer is not obvious.

Remark 1.3. Notice that if ω ∩O ≠ ∅, it is always possible to choose O0 ⋐ O such that O0 ∩ ω ̸= ∅. Thus,
from now on, the open set O0 from (1.3) will be fixed like this.

As a consequence of Theorem 1.1, we obtain the following result:

Corollary 1.1. There are insensitizing controls v for the functional Jτ given by (1.3).

To prove Theorem 1.1 we follow a standard approach introduced in [18] (see also, [9, 17, 25]). We first
deduce a null controllability result for the linear system:

wt −∆w +∇pw = fw + v1ω + f, ∇ · w = 0 in Q,
−zt −∆z +∇pz = fz +∇× ((∇× w)χ) , ∇ · z = 0 in Q,
w = 0, z = 0 on Σ,
w(0) = y0, z(T ) = 0 in Ω,

(1.11)
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where fw and fz are going to be taken to decrease exponentially to zero at t = 0.
The main tool to prove this controllability result for system (1.11), and the second main result of this

study, is a suitable Carleman estimate for the solutions of its adjoint system, namely,
−φt −∆φ+∇π = gφ +∇× ((∇× ψ)χ) , ∇ · φ = 0 in Q,
ψt −∆ψ +∇h = gψ, ∇ · ψ = 0 in Q,
φ = 0, ψ = 0 on Σ,
φ(T ) = 0, ψ(0) = ψ0 in Ω,

(1.12)

where ψ0 ∈ H, gφ and gψ are going to be taken with different regularity properties that will be detailed
later on. In fact, this Carleman inequality is of the form

∫∫
Q

ρ̃21(t)
(
|φ|2 + |ψ|2

)
dxdt ≤ C

∥∥∥ρ̃2(t) (gφ, gψ) ∥∥∥2X +

N∑
j=1
j ̸=i

∫∫
ω×(0,T )

ρ̃23(t)|φj |2dxdt

 , (1.13)

where ρ̃k(t), k ∈ {1, 2, 3}, are positive weight functions, j ∈ {1, . . . , N} \ {i}, C > 0 only depends on Ω, ω,
O and T and X is a suitable Banach space. This estimate is stated in Proposition 3.1.

This paper is organized as follows. In Section 2, we state the main results that we are going to use in the
following sections. In Section 3, we prove a Carleman inequality for the adjoint system (1.12). In Section 4,
we show the null controllability of the linearized cascade system (1.11). Finally, in Section 5, we deal with
the null controllability for the nonlinear cascade system (1.6).

2 Technical results and notations

In this section we introduce some notation and all the technical results needed in this work.

2.1 Some notations

We denote by Y0 := L2(0, T ;H). For n ∈ Z+, we define the space Yn as follows:

Yn := L2(0, T ;H2n(Ω)N ∩ V ) ∩Hn(0, T ;L2(Ω)N ),

given by the norm
∥u∥2Yn

:= ∥u∥2L2(0,T ;H2n(Ω)N ) + ∥u∥2Hn(0,T ;L2(Ω)N ).

The following subspace is going to be used only in Section 4. For every n ∈ Z+, we set

Yn,0 := {u ∈ Yn : [LkHu]|Σ = 0, [LkHu](0) = 0, k = 0, . . . , n− 1},

endowed with the equivalent norm (by Lemma 2.4 with u0 ≡ 0),

∥u∥2Yn,0
:= ∥LnHu∥2L2(Q)N ,

Here, LH := ∂t−PL(∆), where PL denotes the Leray projector over the spaceH, i.e. PL : L2(Q)N 7→ L2(Q)N ,
PLu := u−∇p, where ∆p = ∇ · u in Ω and ∇p · −→n = u · −→n on ∂Ω (see [37], pages 16-18).

Also, we denote by X0 := L2(0, T ;V ) and for n ∈ Z+, we define the space Xn as:

Xn := L2(0, T ;H2n+1(Ω)N ∩ V ) ∩H1(0, T ;H2n−1(Ω)N ),

given by the norm
∥u∥2Xn

:= ∥u∥2L2(0,T ;H2n+1(Ω)N ) + ∥u∥2H1(0,T ;H2n−1(Ω)N ).
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2.2 Carleman estimates

Here, we present some Carleman estimates needed to prove estimate (1.13). These inequalities have been
proved in previous papers and we give precise references about where to find each one of them. Before we
can establish these estimates, let us introduce some classical weight functions. Let ω0 be a nonempty open
subset of RN such that ω0 ⋐ ω ∩ O0 (see Remark 1.3) and η ∈ C2(Ω) such that

|∇η| > 0 in Ω \ ω0, η > 0 in Ω and η ≡ 0 on ∂Ω.

The proof of the existence of such a function η is given in [18]. Let also ℓ ∈ C∞([0, T ]) be a positive function
in (0, T ) satisfying

ℓ(t) = t, ∀t ∈ [0, T/4],
ℓ(t) = T − t, ∀t ∈ [3T/4, T ],
ℓ(t) ≤ ℓ(T/2), ∀t ∈ [0, T ].

Then, for all λ ≥ 1 and m ≥ 14 we consider the following weight functions:

α(x, t) =
e2λ∥η∥∞ − eλη(x)

ℓ(t)m
, ξ(x, t) =

eλη(x)

ℓ(t)m
,

α∗(t) = max
x∈Ω

α(x, t), ξ∗(t) = min
x∈Ω

ξ(x, t),

α̂(t) = min
x∈Ω

α(x, t), ξ̂(t) = max
x∈Ω

ξ(x, t).

(2.1)

Notice that from (2.1), we obtain the following properties:

|∂nt α|, |∂nt ξ| ≤ Cξ(1+n/m), |∂ιxα|, |∂ιxξ| ≤ Cξ|ι|, (2.2)

where n is any nonnegative integer, ι is a N -multi-index and C > 0 is a constant only depending on Ω, λ, η
and ℓ. This property is also valid for the pairs (α∗, ξ∗) and (α̂, ξ̂). The following result is a Carleman inequality
for parabolic equations with nonhomogeneous boundary conditions proved in [26]:

Lemma 2.1. Let f0, f1, . . . , fN ∈ L2(Q). There exists a constant λ̂1 > 0 such that for any λ ≥ λ̂1 there
exists C > 0 depending only on λ, Ω, ω0, η y ℓ such that for every u ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;H−1(Ω))
satisfying

ut −∆u = f0 +

N∑
j=1

∂jfj in Q,

we have

∫∫
Q

e−10sα(s−1ξ−1|∇u|2 + sξ|u|2)dxdt ≤ C

s ∫∫
ω0×(0,T )

e−10sαξ|u|2dxdt+
∥∥∥s−1/4e−5sαξ−1/4u

∥∥∥2
H1/4,1/2(Σ)

+
∥∥∥s−1/4e−5sαξ−1/4+1/mu

∥∥∥2
L2(Σ)

+ s−2

∫∫
Q

e−10sαξ−2|f0|2dxdt+
N∑
j=1

∫∫
Q

e−10sα|fj |2dx dt

 ,

for every s ≥ C.

Recall that
∥u∥

H
1
4
, 1
2 (Σ)

= (∥u∥2H1/4(0,T ;L2(∂Ω)) + ∥u∥2L2(0,T ;H1/2(∂Ω)))
1/2.

The next technical result corresponds to Lemma 3 in [12].

Lemma 2.2. Let r ∈ R. There exists C > 0 depending only on Ω, ω0, η y ℓ such that , for every T > 0 and
every u ∈ L2(0, T,H1(Ω)),

s2
∫∫
Q

e−10sαξr+2|u|2dxdt ≤ C

∫∫
Q

e−10sαξr|∇u|2dxdt+ s2
∫∫

ω0×(0,T )

e−10sαξr+2|u|2dxdt

 ,

for every s ≥ C.
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The following result corresponds to a new Carleman estimate that we are going to prove in Appendix A:

Lemma 2.3. Let u0 ∈ H, f0 ∈ L2(Q)N and f1 ∈ L2(Q)N×N . Then, there exist a constant C(Ω, ω0, T ) > 0
such that for any i ∈ {1, . . . , N}, the weak solution u ∈ L2(0, T ;V )∩L∞(0, T, L2(Ω)N )∩H1(0, T ;H−1(Ω)N )
of  ut −∆u+∇h = f0 +∇ · f1, ∇ · u = 0 in Q,

u = 0 on Σ,
u(0) = u0 in Ω.

(2.3)

satisfies

s4
∫∫
Q

e−13sα∗
(ξ∗)4|u|2dx dt+ s3

∫∫
Q

e−13sα∗
(ξ∗)3−1/m|∇u|2dxdt+ s2

∫∫
Q

e−13sα∗
(ξ∗)2−2/m|h|2dx dt

≤ C

∫∫
Q

e−11sα∗
|f0|2dx dt+ s7

∫∫
Q

e−11sα∗
(ξ̂)7|f1|2dxdt+ s7

N∑
j=1
j ̸=i

∫∫
ω×(0,T )

e−2sα̂−11sα∗
(ξ̂)7|uj |2dx dt

 ,

(2.4)

for every s ≥ C.

2.3 Regularity estimates

Here, we state some regularity results concerning the Stokes equation.
The next result concerns the regularity of the solutions to the Stokes system which can be found in [28]

(see also [37]):

Lemma 2.4. For every T > 0, every u0 ∈ V and every f ∈ L2(Q)N , there exists a unique solution

u ∈ L2(0, T ;H2(Ω)N ) ∩H1(0, T ;L2(Ω)N ) ∩ L∞(0, T ;V )

to the Stokes system  ut −∆u+∇p = f, ∇ · u = 0 in Q,
u = 0 on Σ
u(0) = u0 in Ω,

(2.5)

for some p ∈ L2(0, T ;H1(Ω)), and there exists a constant C > 0 depending only on Ω such that

∥u∥2L2(0,T ;H2(Ω)N ) + ∥u∥2H1(0,T ;L2(Ω)N ) + ∥u∥2L∞(0,T ;V ) + ∥p∥2L2(0,T ;H1(Ω)) ≤ C
(
∥f∥2L2(Q)N +

∥∥u0∥∥2
V

)
. (2.6)

In order to deal with more regular solutions, let us introduce some compatibility conditions. We are going to
say that f satisfies the compatibility condition of order r if, for any nonnegative integer k ≤ r − 1, we have

∇pk(x) =
k∑
i=0

(∂it∆
k−if)(0, x), x ∈ ∂Ω.

where p0 ≡ 0 and, for k > 0, pk is the solution of the Neumann boundary-value problem
∆pk = (∇ · ∂k−1

t )f(0) in Ω,

∂np
k = ∆ku0 · n+

k−1∑
i=0

(
(∂it∆

k−1−if)(0)
)
· n−

k−2∑
i=0

∂n

(
∂it∆

k−2−i
)
∇ · f(0) on ∂Ω.

One has the following lemma (see, for instance [28, 35, 38]):

Lemma 2.5. Let T > 0 and let r be a positive integer. There exists C > 0 depending only on r and Ω
such that, for every f ∈ Yr satisfying the compatibility conditions of order r, the solution u of (2.5) satisfies
u ∈ Yr+1 and

∥u∥2Yr+1
≤ C(∥f∥2Yr

+ ∥u0∥2H2r+1(Ω)N∩V ). (2.7)
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The following regularity result can be found in [19] where the author does a proof’s sketch of the
regularity result when the function of the right-hand side, f ∈ L2(0, T ;V ). On the other hand, when
f ∈ L2(0, T ;H1(Ω)N ) ∩H1(0, T ;H−1(Ω)N ) see [38, 28] and [34].

Lemma 2.6. For every T > 0, every u0 ∈ H2(Ω)N and every f ∈ L2(0, T ;V ), the unique solution to the
Stokes system (2.5) satisfies

u ∈ L2(0, T ;H3(Ω)N ) ∩H1(0, T ;V )

and there exists a constant C > 0 depending only on Ω such that

∥u∥2L2(0,T ;H3(Ω)N ) + ∥u∥2H1(0,T ;V ) ≤ C
(
∥f∥2L2(0,T ;V ) +

∥∥u0∥∥2
H2(Ω)N

)
. (2.8)

In order to treat more regular solutions, let us introduce some compatibility conditions. We are going to say
that f satisfies the compatibility condition of order r if, for any nonnegative integer k ≤ r − 1, we have

∇pk(x) =
k∑
i=0

(∂it∆
k−if)(0, x), x ∈ ∂Ω.

where p0 ≡ 0 and, for k > 0, pk is the solution of the Neumann boundary-value problem
∆pk = 0 in Ω,

∂np
k = ∆ku0 · n+

k−1∑
i=0

(
(∂it∆

k−1−if)(0)
)
· n on ∂Ω.

We have the following lemma which is analogous to Lemma 2.5:

Lemma 2.7. Let T > 0 and let r be a positive integer. There exists C > 0 depending only on r and Ω
such that, for every f ∈ Xr satisfying the compatibility conditions of order r, the solution u of (2.5) satisfies
u ∈ Xr+1 and

∥u∥2Xr+1
≤ C(∥f∥2Xr

+ ∥u0∥2H2r+2(Ω)N ). (2.9)

3 Carleman estimate for the adjoint system

In this section we are going to prove a new Carleman estimate for the Stokes coupled system:
−φt −∆φ+∇π = gφ +∇× ((∇× ψ)χ) , ∇ · φ = 0 in Q,
ψt −∆ψ +∇h = gψ, ∇ · ψ = 0 in Q,
φ = 0, ψ = 0 on Σ,
φ(T ) = 0, ψ(0) = ψ0 in Ω,

(3.1)

where gφ ∈ L2(Q)N , gψ ∈ X3 and ψ0 ∈ H. One has the following proposition:

Proposition 3.1. Assume that ω ∩O ≠ ∅. Then, there exists a constant C > 0 depending only on λ, Ω, ω
and ℓ such that for any i ∈ {1, . . . , N}, any gφ ∈ L2(Q)N , any gψ ∈ X3 and any ψ0 ∈ H, the solution (φ,ψ)
of (3.1) satisfies

s4
∫∫
Q

e−13sα∗
(ξ∗)4|φ|2dxdt+ s7

∫∫
Q

e−10sα∗
(ξ∗)7|∇ψ|2dxdt

≤ C

 N∑
j=1
j ̸=i

s16
∫∫

ω×(0,T )

e−10sαξ16+5/m|φj |2dxdt+ s11
∥∥∥e−5sαξ11/2gφ

∥∥∥2
L2(Q)N

+
∥∥∥e−9/2sα∗

gψ
∥∥∥2
X3

 , (3.2)

for every s ≥ C.
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For simplicity, we are going to prove Proposition 3.1 with N = 2 and i = 2 (we can also to take i = 1).
The same method can be applied to the case N = 3.

The idea of the proof of Proposition 3.1 is as follows. First, we prove a Carleman inequality for the system
satisfied by ψ. Then, we apply Lemma 2.3 to the system satisfied by φ. Finally, we combine the Carleman
inequalities of ψ and φ and we use the coupling of the equation (1.12)1 (the first equation of (1.12)) in the
observation set O × (0, T ) to absorbe the local term with ∆2ψ1. This will prove the estimate (3.2).

3.1 Carleman estimate for ψ

We prove the Carleman estimate for ψ. We consider the Stokes system ψt −∆ψ +∇h = gψ, ∇ · ψ = 0 in Q,
ψ = 0 on Σ,
ψ(0) = ψ0 in Ω,

(3.3)

where ψ0 ∈ H and gψ ∈ X3. We prove the following estimate for the solutions of system (3.3).

Proposition 3.2. Let ω̃ ⊂ Ω be a nonempty open set such that ω0 ⋐ ω̃. Then, there exists a constant C > 0
depending only on λ, Ω, ω and ℓ such that for any i ∈ {1, . . . , N}, any ψ0 ∈ H and any gψ ∈ X3, the solution
ψ of (3.3) satisfies

N∑
j=1
j ̸=i

s−1

∫∫
Q

e−10sαξ−1
∣∣∇∇∇∇∆2ψj

∣∣2 dxdt+ s

∫∫
Q

e−10sαξ
∣∣∇∇∇∆2ψj

∣∣2 dxdt
+s3

∫∫
Q

e−10sαξ3
∣∣∇∇∆2ψj

∣∣2 dxdt+ s5
∫∫
Q

e−10sαξ5
∣∣∇∆2ψj

∣∣2 dxdt+ s7
∫∫
Q

e−10sαξ7
∣∣∆2ψj

∣∣2 dx dt


+ s7
∫∫
Q

e−10sα∗
(ξ∗)7 |ψ|2 dxdt+ s7

∫∫
Q

e−10sα∗
(ξ∗)7 |∇ψ|2 dx dt+ s7

∫∫
Q

e−10sα∗
(ξ∗)7 |∆ψ|2 dxdt

≤ C

 N∑
j=1
j ̸=i

s7
∫∫

ω̃×(0,T )

e−10sαξ7|∆2ψj |2dx dt+
∫∫
Q

e−10sα|∇2∆2gψ|2dxdt+
∥∥∥s5/2e−5sα∗

(ξ∗)5/2−1/mgψ
∥∥∥2
X0

+
∥∥∥s3/2e−5sα∗

(ξ∗)3/2−2/mgψ
∥∥∥2
X1

+
∥∥∥s1/2e−5sα∗

(ξ∗)1/2−3/mgψ
∥∥∥2
X2

+
∥∥∥s−1/2e−5sα∗

(ξ∗)−1/2−4/mgψ
∥∥∥2
X3

+s7
∫∫
Q

e−10sα∗
(ξ∗)7|∆gψ|2dx dt

 , (3.4)

for every s ≥ C.

Proof. Proposition 3.2 is proved in Appendix B.

To continue with the proof of Proposition 3.1, we take ω̃ ⊂ Ω such that ω0 ⋐ ω̃ ⋐ ω ∩ O0. Furthermore,
from estimate (3.4), notice that

I(ψ) ≤C

s7 ∫∫
ω̃×(0,T )

e−10sαξ7|∆2ψ1|2dxdt+
∥∥∥e−9/2sα∗

gψ
∥∥∥2
X3

 , (3.5)
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for every s ≥ C, where

I(ψ) :=s−1

∫∫
Q

e−10sαξ−1|∇∇∇∇∆2ψ1|2dxdt+ s

∫∫
Q

e−10sαξ|∇∇∇∆2ψ1|2dxdt

+ s3
∫∫
Q

e−10sαξ3|∇∇∆2ψ1|2dxdt+ s5
∫∫
Q

e−10sαξ5|∇∆2ψ1|2dxdt+ s7
∫∫
Q

e−10sαξ7|∆2ψ1|2dxdt

+ s7
∫∫
Q

e−10sα∗
(ξ∗)7|ψ|2dxdt+ s7

∫∫
Q

e−10sα∗
(ξ∗)7|∇ψ|2dxdt+ s7

∫∫
Q

e−10sα∗
(ξ∗)7|∆ψ|2dxdt.

3.2 Carleman estimate for φ

Now, we deal with the Stokes system: −φt −∆φ+∇π = ∇× ((∇× ψ)χ) + gφ, ∇ · φ = 0 in Q,
φ = 0 on Σ,
φ(T ) = 0 in Ω.

(3.6)

Applying Lemma 2.3 to the system (3.6), we see that

s4
∫∫
Q

e−13sα∗
(ξ∗)4|φ|2dx dt+ s3

∫∫
Q

e−13sα∗
(ξ∗)3−1/m|∇φ|2dxdt

≤C

s7 ∫∫
O×(0,T )

e−11sα∗
(ξ̂)7|∇ × ψ|2dxdt+ s7

∫∫
ω×(0,T )

e−2sα̂−11sα∗
(ξ̂)7|φ1|2dxdt

+

∫∫
Q

e−11sα∗
|gφ|2dxdt

 , (3.7)

for every s ≥ C.
Notice that, using the fact that ψ|Σ = 0 we obtain

s7
∫∫

O×(0,T )

e−11sα∗
(ξ̂)7|∇ × ψ|2dx dt ≤Cs7

∫∫
Q

e−11sα∗
(ξ̂)7|∇ψ|2dxdt

≤Cs7
∫∫
Q

e−10sα∗
(ξ∗)7|∇ψ|2dxdt.

Then, using this inequality in (3.7), we have that

s4
∫∫
Q

e−13sα∗
(ξ∗)4|φ|2dxdt+ s3

∫∫
Q

e−13sα∗
(ξ∗)3−1/m|∇φ|2dx dt

≤C

s7 ∫∫
Q

e−10sα∗
(ξ∗)7|∇ψ|2dxdt+ s7

∫∫
ω×(0,T )

e−2sα̂−11sα∗
(ξ̂)7|φ1|2dxdt

+

∫∫
Q

e−11sα∗
|gφ|2dxdt

 , (3.8)

for every s ≥ C.
Therefore, the first term of the right-hand side of (3.7) is absorbed by the penultimate term of the

left-hand side of (B.15).
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3.3 End of the proof of Proposition 3.1

Notice that combining (3.5) with (3.8), we obtain:

s4
∫∫
Q

e−13sα∗
(ξ∗)4|φ|2dxdt+ I(ψ)

≤C

s7 ∫∫
ω×(0,T )

e−2sα̂−11sα∗
(ξ̂)7|φ1|2dxdt+ s7

∫∫
ω̃×(0,T )

e−10sαξ7|∆2ψ1|2dx dt

+
∥∥∥e−9/2sα∗

gψ
∥∥∥2
X3

++

∫∫
Q

e−11sα∗
|gφ|2dxdt

 , (3.9)

for every s ≥ C.
To conclude the proof of Proposition 3.1, we estimate the local term ∆2ψ1 in terms of local integrals of

φ1 of the left-hand side of (3.9).
We start by looking at the equation satisfied by φ1 in O0 × (0, T ), and applying the Laplacian, we find

∆2ψ1 = (∆φ1)t +∆2φ1 +∆gφ1 − ∂1∇ · gφ in O0 × (0, T ), (3.10)

where we have used that ∆π = ∇ · gφ in O0 × (0, T ).
Now, let θ ∈ C8

c (ω ∩O0) be a nonnegative function such that θ ≡ 1 in ω̃ with ω̃ ⋐ ω ∩O0. Using (3.10),
and since ω̃ ⊂ O0, we have:

J :=s7
∫∫

ω̃×(0,T )

e−10sαξ7|∆2ψ1|2dxdt.

≤s7
∫∫

ω∩O0×(0,T )

θe−10sαξ7|∆2ψ1|2dxdt.

=s7
∫∫

ω∩O0×(0,T )

θe−10sαξ7∆2ψ1

(
(∆φ1)t +∆2φ1 +∆gφ1 − ∂1∇ · gφ

)
dxdt.

After integrating by parts in space and time, we obtain:

J ≤−
∫∫

ω∩O0×(0,T )

θ(s7e−10sαξ7)t∆
2ψ1∆φ1dx dt

+

∫∫
ω∩O0×(0,T )

(
∆(θs7e−10sαξ7)∆2ψ1 + 2∇(θs7e−10sαξ7) · ∇∆2ψ1

)
∆φ1dxdt

+

∫∫
ω∩O0×(0,T )

θs7e−10sαξ7
(
− (∆2ψ1)t +∆(∆2ψ1)

)
∆φ1dxdt

+

∫∫
ω∩O0×(0,T )

∆(θs7e−10sαξ7∆2ψ1)g
φ
1 dx dt−

∫∫
ω∩O0×(0,T )

∇
(
∂1(θs

7e−10sαξ7∆2ψ1)
)
· gφdx dt. (3.11)

Now, we use the equation satisfied by ψ1:

∆2ψ1 = (∆ψ1)t −∆gψ1 in O0 × (0, T ),
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where we have used the fact that ∆h = 0 in O0 × (0, T ). Therefore,

J ≤−
∫∫

ω∩O0×(0,T )

θ(s7e−10sαξ7)t∆
2ψ1∆φ1dxdt

+

∫∫
ω∩O0×(0,T )

(
∆(θs7e−10sαξ7)∆2ψ1 + 2∇(θs7e−10sαξ7) · ∇∆2ψ1

)
∆φ1dx dt

−
∫∫

ω∩O0×(0,T )

θs7e−10sαξ7∆2gψ1 ∆φ1dxdt+

∫∫
ω∩O0×(0,T )

∆(θs7e−10sαξ7∆2ψ1)g
φ
1 dx dt

−
∫∫

ω∩O0×(0,T )

∇
(
∂1(θs

7e−10sαξ7∆2ψ1)
)
· gφdxdt.

=

5∑
k=1

Jk, (3.12)

for every s ≥ C.
For J1, we use integration by parts again, also, we apply the properties of the weight functions shown in

(2.2) and, finally, we use Young’s inequality, to get:

J1 =

∫∫
ω∩O0×(0,T )

∆(θ(s7e−10sαξ7)t)∆
2ψ1φ1dxdt+ 2

∫∫
ω∩O0×(0,T )

∇(θ(s7e−10sαξ7)t)∇∆2ψ1φ1dxdt

+

∫∫
ω∩O0×(0,T )

θ(s7e−10sαξ7)t∆(∆2ψ1)φ1dxdt.

≤ϵI(ψ) + C(ϵ)s13
∫∫

ω×(0,T )

s13e−10sαξ13+2/m|φ1|2dx dt. (3.13)

for every s ≥ C and any ϵ > 0.
For J2, we use integration by parts again, also, we apply the properties of the weight functions shown in

(2.2) and, finally, we use Young’s inequality, to have:

J2 =

∫∫
ω∩O0×(0,T )

∆2(θs7e−10sαξ7)∆2ψ1φ1dxdt+ 2

∫∫
ω∩O0×(0,T )

∇∆(θs7e−10sαξ7)∇∆2ψ1φ1dxdt

+

∫∫
ω∩O0×(0,T )

∆(θs7e−10sαξ7)∆3ψ1φ1dxdt+ 2

∫∫
ω∩O0×(0,T )

∆∇(θs7e−10sαξ7)∇∆2ψ1φ1dx dt

+ 4

∫∫
ω∩O0×(0,T )

∇2(θs7e−10sαξ7)∇2∆2ψ1φ1dx dt+ 2

∫∫
ω∩O0×(0,T )

∇(θs7e−10sαξ7)∇∆3ψ1φ1dxdt

≤ϵI(ψ) + C(ϵ)s15
∫∫

ω×(0,T )

e−10sαξ15|φ1|2dxdt. (3.14)

for every s ≥ C and any ϵ > 0.
For J3, we use integration by parts again, also, we apply the properties of the weight functions shown in

(2.2), to obtain:

J3 =

∫∫
ω∩O0×(0,T )

∆(s7θe−10sαξ7)∆2gψ1 φ1dxdt+ 2

∫∫
ω∩O0×(0,T )

∇(s7θe−10sαξ7)∇∆2gψ1 φ1dx dt

+

∫∫
ω∩O0×(0,T )

s7θe−10sαξ7∆3gψ1 φ1dxdt :=

3∑
k=1

J3k.
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To estimate J3k with k ∈ {1, 2, 3}, we use Young’s inequality. We have

J31 ≤C
∥∥∥se−5sαξ1−5/(2m)gψ1

∥∥∥2
L2(0,T ;H4(Ω)N )

+ Cs16
∫∫

ω×(0,T )

e−10sαξ16+5/m|φ1|2dxdt, (3.15)

J32 ≤C
∥∥∥s1/2e−5sαξ1/2−3/mgψ1

∥∥∥2
L2(0,T ;H5(Ω)N )

+ Cs15
∫∫

ω×(0,T )

e−10sαξ15+6/m|φ1|2dxdt, (3.16)

J33 ≤C
∥∥∥e−5sαξ−7/(2m)gψ1

∥∥∥2
L2(0,T ;H6(Ω)N )

+ Cs14
∫∫

ω×(0,T )

e−10sαξ14+7/m|φ1|2dxdt, (3.17)

for every s ≥ C and any ϵ > 0.
For J4, we use integration by parts again, also, we apply the properties of the weight functions shown in

(2.2) and, finally, we use Young’s inequality, to get:

J4 =

∫∫
ω∩O0×(0,T )

∆(θs7e−10sαξ7)∆2ψ1g
φ
1 dxdt+ 2

∫∫
ω∩O0×(0,T )

∇(θs7e−10sαξ7)∇∆2ψ1g
φ
1 dxdt

+

∫∫
ω∩O0×(0,T )

θs7e−10sαξ7∆(∆2ψ1)g
φ
1 dx dt.

≤ϵI(ψ) + C(ϵ)s11
∫∫

ω×(0,T )

e−10sαξ11|gφ1 |2dxdt, (3.18)

for every s ≥ C and any ϵ > 0.
For J5, we use integration by parts again, also, we apply the properties of the weight functions shown in

(2.2) and, finally, we use Young’s inequality, to obtain:

J5 ≤ϵI(ψ) + C(ϵ)s11
∫∫

ω×(0,T )

e−10sαξ11|gφ|2dx dt, (3.19)

for every s ≥ C and any ϵ > 0.
Combining (3.13)–(3.19) and (3.9), together with the fact that

s7e−2sα̂−11sα∗
(ξ̂)7 ≤ Cs16e−10sαξ16+5/m and e−11sα∗

≤ Cs11e−10sαξ11,

for every s ≥ C, we deduce (3.2). This concludes the proof of Proposition 3.1.

4 Null controllability of the linear system

In this section we deal with the null controllability of system:
Lw +∇pw = fw + v1ω, ∇ · w = 0 in Q,
L∗z +∇pz = fz +∇× ((∇× w)χ) , ∇ · z = 0 in Q,
z = 0, w = 0 on Σ,
w(0) = 0, z(T ) = 0 in Ω.

(4.1)

where
L := ∂t −∆ and L∗ := −∂t −∆,

which is the adjoint operator of L. We look for a control v with vi ≡ 0, for some given i ∈ {1, . . . , N} such
that the associated solution of (4.1) satisfies z(0) = 0. To do this, let us first state a Carleman inequality
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with weight functions not vanishing in t = T. We introduce the following weight functions:

β(x, t) =
e2λ∥η∥∞ − eλη(x)

ℓ̃(t)m
, γ(x, t) =

eλη(x)

ℓ̃(t)m
,

β∗(t) = max
x∈Ω

β(x, t), γ∗(t) = min
x∈Ω

γ(x, t),

β̂(t) = min
x∈Ω

β(x, t), γ̂(t) = max
x∈Ω

γ(x, t).

where

ℓ̃(t) =

{
ℓ(t), 0 ≤ t ≤ T/2,
∥ℓ∥∞, T/2 < t ≤ T.

Here, we will assume more regularity for the function gψ to deal with the null controllability of the linear
system.

Now, we have to following Lemma:

Lemma 4.1. Let i ∈ {1, . . . , N} and let s be like in Proposition 3.1. Then, there exists a constant C > 0
(depending on s and λ) such that for any gφ ∈ L2(Q)N , any gψ ∈ Y4,0, every solution (φ,ψ) of (3.1) satisfies

∫∫
Q

e−14sβ∗ (
|φ|2 + |∇ψ|2

)
dxdt ≤ C

 N∑
j=1
j ̸=i

∫∫
ω×(0,T )

e−9sβ |φj |2dxdt+
∥∥∥e−4sβ∗

gφ
∥∥∥2
Y0

+
∥∥∥e−4sβ∗

gψ
∥∥∥2
Y4,0

 .(4.2)

To prove estimate (4.2) it suffices to combine (3.2) and classical energy estimates for the Stokes system
satisfies by φ and ψ. For simplicity, we omit the proof. For more details on how to get (4.2), see [9, 7] or [21].

Now we are ready to prove the null controllability of system (4.1). The idea is to look for a solution in
an appropriate weighted functional space. To this end, we introduce, for i ∈ {1, . . . , N}, the spaces

Ei2 :={(w, pw, z, pz, v) : e4sβ
∗
w ∈ L2(Q)2, e9sβv1ω ∈ L2(Q)2,

e4sβ
∗
(γ∗)−1−1/mw ∈ L2(0, T ;H2(Ω)2) ∩ L∞(0, T ;V ), vi ≡ 0,

e4sβ
∗
(γ∗)−15−15/mz ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), z(T ) ≡ 0,

e7sβ
∗
(Lw +∇pw − v1ω) ∈ L2(Q)2, e7sβ

∗
(L∗z +∇pz −∇× ((∇× w)χ)) ∈ L2(0, T ;H−1(Ω)2)},

and

Ei3 :={(w, pw, z, pz, v) : e4sβ
∗
w ∈ L2(Q)3, e9sβv1ω ∈ L2(Q)3,

e4sβ
∗
(γ∗)−1−1/mw ∈ L2(0, T ;H2(Ω)3) ∩ L∞(0, T ;V ), vi ≡ 0,

e4sβ
∗
(γ∗)−15−15/mz ∈ L2(0, T ;H2(Ω)3) ∩ L∞(0, T ;V ), z(T ) ≡ 0,

e7sβ
∗
(Lw +∇pw − v1ω) ∈ L2(Q)3, e7sβ

∗
(L∗z +∇pz −∇× ((∇× w)χ)) ∈ L2(Q)3}.

It is clear that EiN is a Banach space endowed with their natural norms.

Remark 4.1. In particular, an element (w, pw, z, pz, v) ∈ EiN satisfies w(0) = 0, z(0) = 0, vi ≡ 0. Moreover,

easβ
∗
(γ∗)c is bounded, ∀a > 0,∀c ∈ R, (4.3)

All the details are given in the Section 5.

Proposition 4.1. Let i ∈ {1, . . . , N} and χ : Ω → R given by (1.4) if N = 2, or (1.5) if N = 3. Assume
the hypothesis of Lemma 4.1 and the following hypothesis on the initial condition and the right-hand side of
system (4.1):

If N = 2 : e7sβ
∗
(fw, fz) ∈ L2(Q)2 × L2(0, T ;H−1(Ω)2).

If N = 3 : e7sβ
∗
(fw, fz) ∈ L2(Q)3 × L2(Q)3.

(4.4)

Then, we can find a control v ∈ L2(0, T ;L2(ω)N ) such that the associated solution (w, pw, z, pz, v) of (4.1)
belongs to EiN . In particular, vi ≡ 0 and z(0) = 0 in Ω.
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Proof. Following the arguments in [18] and [25], we introduce the space P0 of functions (φ, π, ψ, h) ∈ C∞(Q)2N+2

such that

- ∇ · φ = ∇ · ψ = 0.

- φ|Σ = ψ|Σ = 0.

- φ(T ) = ψ(0) = 0.

- ∆h|Q = 0.

- (LkH [e−4sβ∗
(Lψ +∇h)])|Σ = 0, k = 0, . . . , 3.

- (LkH [e−4sβ∗
(Lψ +∇h)])(0) = 0, k = 0, . . . , 3.

We consider the bilinear form

a((φ̃, π̃, ψ̃, h̃), (φ, π, ψ, h))

:=

∫∫
Q

e−8sβ∗
(L∗φ̃+∇π̃ −∇× ((∇× ψ̃)χ)) · (L∗φ+∇π −∇× ((∇× ψ)χ))dxdt

+

∫∫
Q

L4
H [e−4sβ∗

(Lψ̃ +∇π̃)] · L4
H [e−4sβ∗

(Lψ +∇π)]dxdt+
∑
j=1
j ̸=i

∫∫
ω×(0,T )

e−9sβ∗
φ̃jφjdx dt,

and a linear form

⟨G, (φ, π, ψ, h)⟩ =
∫∫
Q

fw · φdxdt+
∫∫
Q

fz · ψdxdt.

Due to (4.2), we have that a(·, ·) : P0 × P0 7→ R is a symmetric, definite positive bilinear form on P0. We
denote by P the completion of P0 for the norm induced by a(·, ·). Then a(·, ·) is well defined, continuous and
definite positive on P . Additionally, thanks to the Carleman estimate (4.2) and the assumptions (4.4), the
linear form (φ, π, ψ, h) 7→ ⟨G, (φ, π, ψ, h)⟩ is well-defined and continuous on P . Hence, from Lax-Milgram’s
lemma, we deduce that the variational problem:{

Find (φ̃, π̃, ψ̃, h̃) ∈ P such that

a((φ̃, π̃, ψ̃, h̃), (φ, π, ψ, h)) = ⟨G, (φ, π, ψ, h)⟩, ∀(φ, π, ψ, h) ∈ P,
(4.5)

possesses exactly one solution (φ̂, π̂, ψ̂, ĥ).
Let v̂ be given by {

v̂j := −e−9sβ∗
φ̂j1ω,

v̂i ≡ 0, j ̸= i in Q.
(4.6)

It is simple from (4.5) and (4.6) that we obtain∫∫
Q

(|w̃|2 + |z̃|2)dx dt+
N∑
j=1
j ̸=i

∫∫
ω×(0,T )

e9sβ
∗
|v̂j |2dxdt < +∞, (4.7)

where w̃ and z̃ are given by {
w̃ := e−4sβ∗

(L∗φ̂+∇π̂ −∇× ((∇× ψ̂)χ)),

z̃ := L4
H [e−4sβ∗

(Lψ̂ +∇ĥ)].
(4.8)

In particular, v̂ ∈ L2(0, T ;L2(ω)N ).
Let (ŵ, ẑ), together with some pressures (p̂0, p̂1), the weak solution of (4.1) with v = v̂, that is, they solve

Lŵ +∇p̂0 = fw + v̂1ω, ∇ · ŵ = 0 in Q,
L∗ẑ +∇p̂1 = fz +∇× ((∇× ŵ)χ), ∇ · ẑ = 0 in Q,
ŵ = ẑ = 0 on Σ,
ŵ(0) = 0, ẑ(T ) = 0 in Ω.

(4.9)
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The rest of the proof is dedicated to prove the following exponential decay properties:

e4sβ
∗
(γ∗)−1−1/mŵ ∈ L2(0, T ;H2(Ω)N ) ∩ L∞(0, T ;V ), if N = 2, 3;

e4sβ
∗
(γ∗)−15−15/mẑ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), if N = 2;

e4sβ
∗
(γ∗)−15−15/mẑ ∈ L2(0, T ;H2(Ω)3) ∩ L∞(0, T ;V ), if N = 3;

(4.10)

which will solve the null controllability problem for system (4.1).
First, we are going to prove that (w̃, z̃) given by (4.8) is actually the solution (in the sense of transposition)

of {
e−4sβ∗

w̃ = ŵ in Q,

e−4sβ∗
(L∗

H)4z̃ = ẑ, ∇ · z̃ = 0 in Q,
(4.11)

such that {
(L∗

H)ℓz̃ = 0 on Σ, ℓ = 0, . . . , 3,
(L∗

H)ℓz̃(T ) = 0 in Ω, ℓ = 0, . . . , 3.
(4.12)

Now, from (4.5), (4.6), (4.8) and (4.9), we obtain for every (φ, π, ψ, h) ∈ P0∫∫
Q

w̃ · e−4sβ∗
(L∗φ+∇π −∇× ((∇× ψ)χ))dx dt+

∫∫
Q

z̃ · L4
H [e−4sβ∗

(Lψ +∇h)]dx dt

=

∫∫
Q

φ · (Lŵ +∇p̂0)dxdt+
∫∫
Q

ψ · (L∗ẑ +∇p̂1 −∇× ((∇× ŵ)χ)) dxdt.

=

∫∫
Q

ŵ · (L∗φ+∇π −∇× ((∇× ψ)χ)) dxdt+

∫∫
Q

ẑ · (Lψ +∇h)dxdt.

From this last equality, we obtain for all (hw, hz) ∈ L2(Q)2N∫∫
Q

w̃ · hwdxdt+
∫∫
Q

z̃ · hzdxdt =
∫∫
Q

ŵ · Φwdxdt+
∫∫
Q

ẑ · Φzdxdt, (4.13)

where (Φw,Φz) is the solution of{
e−4sβ∗

Φw = hw in Q,

L4
H [e−4sβ∗

Φz] = hz, ∇ · Φz = 0 in Q,
(4.14)

such that {
LℓH(e−4sβ∗

Φz) = 0 on Σ, ℓ = 0, . . . , 3,

LℓH(e−4sβ∗
Φz)(0) = 0 in Ω, ℓ = 0, . . . , 3.

(4.15)

It is classical to show that (4.13)–(4.15) is equivalent to (4.11)–(4.12).
Now, let

(w∗, p0∗) := e4sβ
∗
(γ∗)−1−1/m(ŵ, p̂0), f

w
∗ := e4sβ

∗
(γ∗)−1−1/mfw.

Then, (w∗, p0∗) satisfies Lw∗ +∇p0∗ = fw∗ + e4sβ
∗
(γ∗)−1−1/mv̂1ω + (e4sβ

∗
(γ∗)−1−1/m)tŵ, ∇ · w∗ = 0 in Q,

w∗ = 0 on Σ,
w∗(0) = 0 in Ω,

From (4.4), (4.7), (4.11), (2.2) and e4sβ
∗
ŵ ∈ L2(Q)N , we have that the right-hand side of this equation

belongs to L2(Q)N . Using Lemma 2.4, we deduce that w∗ ∈ L2(0, T ;H2(Ω)N ) ∩ L∞(0, T ;V ).
Finally, to complete the proof of (4.10), we will use the following Lemma whose proof is done in

Appendix C.

Lemma 4.2. e4sβ
∗
(γ∗)−14−14/mẑ ∈ L2(Q)N .
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Now, let

(z∗, p1∗) := e4sβ
∗
(γ∗)−15−15/m(ẑ, p̂1), fz∗ := e4sβ

∗
(γ∗)−15−15/m(fz +∇× ((∇× ŵ)χ)).

Then, (z∗, p1∗) satisfies L∗z∗ +∇p1∗ = fz∗ − (e4sβ
∗
(γ∗)−15−15/m)tẑ, ∇ · z∗ = 0 in Q,

z∗ = 0 on Σ,
z∗(T ) = 0 in Ω,

(4.16)

Next, we are going to study the cases N = 2, 3. Notice that fz∗ can be written as:

fz∗ = e−3sβ∗
(γ∗)−15−15/m(e7sβ

∗
fz) + (γ∗)−14−14/m∇× ((∇× w∗)χ) .

If N = 2, we have that χ = 1O (recall (1.4)). Then, from (4.4), (∇×w∗)1O ∈ L2(Q)2, and the fact that
e−3sβ∗

(γ∗)−15−15/m and (γ∗)−14−14/m are bounded, we deduce that fz∗ ∈ L2(0, T ;H−1(Ω)2).
If N = 3, since χ is a smooth function (recall (1.5)), we obtain fz∗ ∈ L2(Q)3 from (4.4), and (∇×w∗)χ ∈

L2(0, T ;H1(Ω)3).
Therefore, from (4.4), (4.7), (4.11), (2.2) and Lemma 4.2, we have that the right-hand side of system

(4.16) belongs to L2(0, T ;H−1(Ω)2) or L2(Q)3 in dimension 2 or 3, respectively. Then, in dimension 2, we
deduce that z∗ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H). Now, in dimension 3, again by Lemma 2.4, we obtain that
z∗ ∈ L2(0, T ;H2(Ω)3) ∩ L∞(0, T ;V ). This concludes the proof of Proposition 4.1.

Remark 4.2. Notice that the last part of the the proof of Proposition 4.1 is the first time that the smoothness
of χ is used. Everything else up to this point remains to be true if χ = 1O, even for N = 3. The reason to
assume that χ is smooth in N = 3 is to obtain extra regularity for z in order to deal with the nonlinearities
of system 1.6. More details are given in Section 5.

5 Proof of Theorem 1.1

Recall that we deal with the following null controllability problem: to find controls v verifying vi ≡ 0 such
that the solution of the system

Lw + (w,∇)w +∇pw = f + v1ω, ∇ · w = 0 in Q,
L∗z + (z,∇t)w − (w,∇)z +∇pz = ∇× ((∇× w)χ) , ∇ · z = 0 in Q,
w = 0, z = 0 on Σ,
w(0) = y0, z(T ) = 0 in Ω.

(5.1)

satisfies z(0) = 0 in Ω. We proceed using similar arguments to those in [25], (see also [9, 11, 15, 21]). The
null controllability result for the linear system given by Proposition 4.1 is going to allow us to apply the
following inverse mapping theorem (see [1]):

Theorem 5.1. Let G1 and G2 be two Banach spaces and let F : G1 → G2 satisfy F ∈ C1(G1;G2). Assume
that g1 ∈ G1, F(g1) = g2 and that F ′(g1) : G1 7→ G2 is surjective. Then, there exists δ > 0 such that, for
every g′ ∈ G2 satisfying ∥g′ − g2∥G2 ≤ δ, there exists a solution of the equation

F(g) = g′, g ∈ G1.

Let us set the framework to apply Theorem 5.1 to the problem at hand. Let

G1 := EiN , G2 :=

{
L2(e7sβ

∗
(0, T );L2(Ω)2)× L2(e7sβ

∗
(0, T );H−1(Ω)2) if N = 2,

L2(e7sβ
∗
(0, T );L2(Ω)3)× L2(e7sβ

∗
(0, T );L2(Ω)3) if N = 3,

and the operator

F(w, pw, z, pz, v) :=
(
Lw + (w,∇)w +∇pw − v1ω,

L∗z + (z,∇t)w − (w,∇)z +∇pz −∇× ((∇× w)χ)
)
,
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for (w, pw, z, pz, v) ∈ G1. Here, u ∈ L2(e7sβ
∗
(0, T );L2(Ω)2N ) means e7sβ

∗
u ∈ L2(Q)2N . It only remains to

check that the operator F is of class C1(G1;G2). To do this, we notice that all the terms in F are linear,
except for (w,∇)w and (z,∇t)w− (w,∇)z. Let us check that these terms are continuous from G1×G1 to G2.

We will study the cases in dimension 2 and 3, respectively.
IfN = 2 : Since e4sβ

∗
(γ∗)−15−15/mz ∈ L2(0, T ;V )∩L∞(0, T ;H), and e4sβ

∗
(γ∗)−1−1/mw ∈ L2(0, T ;H2(Ω)2)∩

L∞(0, T ;V ) for any (w, pw, z, pz, v) ∈ Ei2, then

e4sβ
∗
(γ∗)−15−15/mz ∈ L4(Q)2,

and
e4sβ

∗
(γ∗)−1−1/m∇tw ∈ L4(Q)4.

Therefore, for the term (z,∇t)w we have:∥∥∥e7sβ∗
(z,∇t)w

∥∥∥
L2(0,T ;H−1(Ω)2)

≤ C
∥∥∥(e4sβ∗

(γ∗)−15−15/m(z,∇t)e4sβ
∗
(γ∗)−1−1/mw

∥∥∥
L2(Q)2

≤ C
∥∥∥e4sβ∗

(γ∗)−15−15/mz
∥∥∥
L4(Q)2

∥∥∥e4sβ∗
(γ∗)−1−1/m∇tw

∥∥∥
L4(Q)4

,

where we have used that 7 < 8 and (4.3).
Now, we denote:

(∇ · (w ⊗ z))i =

N∑
j=1

∂j(zjwi), j = 1, . . . , N.

Observe that, using ∇ · w = 0 in Q, the term (w,∇)z can be treated as follows:∥∥∥e7sβ∗
(w,∇)z

∥∥∥
L2(0,T ;H−1(Ω)2)

≤C
∥∥∥e8sβ∗

(γ∗)−15−15/m(w,∇)z
∥∥∥
L2(0,T ;H−1(Ω)2)

=C
∥∥∥∇ · (e4sβ

∗
(γ∗)−1−1/mw ⊗ e4sβ

∗
(γ∗)−15−15/mz)

∥∥∥
L2(0,T ;H−1(Ω)2)

≤C
∥∥∥(e4sβ∗

(γ∗)−1−1/mw)⊗ (e4sβ
∗
(γ∗)−15−15/mz)

∥∥∥
L2(Q)2

≤C
∥∥∥e4sβ∗

(γ∗)−1−1/mw
∥∥∥
L4(Q)2

·
∥∥∥e4sβ∗

(γ∗)−15−15/mz
∥∥∥
L4(Q)2

then, the continuity follows since 7 < 8 and thanks to (4.3). The term (w,∇)w is treated analogously.
If N = 3 : Since e4sβ

∗
(γ∗)−1−1/mw ∈ L2(0, T ;H2(Ω)3) ∩ L∞(0, T ;V ) for any (w, pw, z, pz, v) ∈ Ei3, and

H2(Ω)3 ⊂ L∞(Ω)3, we have that:∥∥∥e7sβ∗
(w,∇)w

∥∥∥
L2(Q)3

≤ C
∥∥∥e8sβ∗

(γ∗)−2−2/m(w,∇)w
∥∥∥
L2(Q)3

≤ C
∥∥∥(e4sβ∗

(γ∗)−1−1/mw,∇)e4sβ
∗
(γ∗)−1−1/mw

∥∥∥
L2(Q)3

≤ C
∥∥∥e4sβ∗

(γ∗)−1−1/mw
∥∥∥
L2(0,T ;L∞(Ω)3)

∥∥∥e4sβ∗
(γ∗)−1−1/mw

∥∥∥
L∞(0,T ;V )

,

and the continuity follows since 7 < 8 and due to (4.3). Since e4sβ
∗
(γ∗)−15−15/mz ∈ L2(0, T ;H2(Ω)3) ∩

L∞(0, T ;V ), the terms (w,∇)z and (z,∇t)w are treated similarly.
It is readily seen that F ′(0) : G1 → G2 is given by

F ′(0)(w, pw, z, pz, v) := (Lw +∇pw − v1ω,L∗z +∇pz −∇× ((∇× w)χ)) ,
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for all (w, pw, z, pz, v) ∈ G1. It follows that this functional is surjective in view of the null controllability
result for the linear system given by Proposition 4.1.

Now, we are in condition to apply Theorem 5.1. By taking g1 = 0 and g2 = 0, it gives the existence of
δ > 0 such that, if

∥∥eC/tmf∥∥
L2(Q)N

≤ δ, for some C > 0, then we can find (w, pw, z, pz, v) ∈ G1 solution

of (5.1). In particular, vi ≡ 0 and z(0) ≡ 0 in Ω. Therefore, the proof of Theorem 1.1 is complete.

6 Some final comments

In this section, we will give some final comments about other control problems or related models.

• Possible relations to hierarchical control.

Hierarchical control problems can be found for the heat equation in [3, 2, 4], and for the Stokes system
in [22]. The main similarity between the insensitizing and the hierarchical control problem is that both
problems can be formulated as a control problem associated to a system of equations with a reduced
number of controls. However, in the case of insensitizing controls, the resulting system has a cascade
structure (see (1.6)), which is not the case, for instance, following a Stackelberg-Nash strategy for
hierarchical control. Our approach is strongly based on the cascade structure, so it is not clear that
solving a hierarchical control problem for the Navier-Stokes system would be a direct consequence of
our results.

• Insensitizing control problem for the Navier-Stokes system with Navier-slip boundary conditions.

Although there are local null controllability results with Navier-slip boundary conditions using N − 1
scalar controls (see [20]), the insensitizing control problem with a reduced amount of scalar controls is
an open problem, even the square of the L2-norm of the state as an observation functional. If we try
to follow the strategy in [20], we find that we would need to use the same equation (first equation of
in (1.12)) to estimate both the pressure and the local term of ψ, which would need a different approach
than the one made here and in [20].

• The Boussinesq system reducing scalar controls.

In this case, the control problem is the following:
yt −∆y + (y · ∇)y +∇p = f + v1ω + θeN , ∇ · y = 0 in Q,
θt −∆θ + y · ∇θ = f0 + v01ω in Q,
y = 0, θ = 0 on Σ,

y(0) = y0 + τ ŷ0, θ(0) = θ0 + τ θ̂0 in Ω.

Here,

eN =

{
(0, 1) if N = 2,
(0, 0, 1) if N = 3,

stands for the gravity vector field, y(x, t) represents the velocity of the particles of an incompressible
fluid, θ = θ(x, t) their temperature, (v0, v) = (v0, v1, . . . , vN ) stands for the control which acts over
the set ω, (f, f0) ∈ L2(Q)N+1 is a given externally applied force and the initial state, (y(0), θ(0)) is

partially unknown, i.e., y0 and θ0 are known, while τ, ŷ0, and θ̂0 are unknown. We want to insensitize
as observation functional the sum of the square of the L2-norm of the curl y with the square of the
L2-norm of the gradient of θ. In this study, the author tries to control with two components fixed at
zero. This work is in preparation, see [32], where the author uses the ideas of [10, 8].

• The primitive equations of ocean.

Considering N = 2, this control problem can be written as:
∂tv −A∆v + γv + (f0 + βx2)v

⊥ +
1

ρ0
∇p = T + h1ω in Q,

∇ · v = 0 in Q,
v = 0 on Σ,
v(0) = v0 + τ v̂0 in Ω.
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Here, v = v(x, t) and p = p(x, t) are the velocity filed and the pressure of the fluid. In this model, A
is the horizontal eddy viscosity coefficient, γ is the bottom friction coefficient, ρ0 is the fluid density
and (f0 + βx2)v

⊥ is the Coriolis term, with v⊥ = (−v2, v1). In the right hand side, 1ω denotes the
characteristic function of ω and T is a given source. The term τ v̂0, where τ ∈ R, represents a small
unknown perturbation of the initial condition v0 and h = h(x, t) is a control term to be determined.

Note that if we try to study desensitizing control of this system with a reduced number of components
of the control, our strategy to obtain the Carleman estimate does not seem to work, because the
equations have mixed components due to the term v⊥ = (−v2, v1) that appears in the first equation.
However, we can mention the work [14], where the ε-insensitizing control for this type of system is
achieved.

• The magnetohydrodynamic system.

The controlled MHD equations (with boundary and initial conditions) we deal with are the following:

∂ty − ν∆y + (y · ∇)y +∇p+∇
(
1

2
B2

)
− (B · ∇)B = f + χωu in Q,

∂tB + η∇× (∇×B) + (y · ∇)B − (B · ∇)y = P (χωv) in Q,
∇ · y = 0, ∇ ·B = 0 in Q,
y = 0, B · n = 0, (∇×B)× n = 0 on Σ,
y(0) = y0, B(0) = B0 in Ω.

Here, y = (y1, y2, y3) : Ω × [0, T ] → R3 is the velocity vector field, p : Ω × [0, T ] → R is the (scalar)
pressure, and B = (B1, B2, B3) : Ω × [0, T ] → R3 is the magnetic field. The vector functions u =
(u1, u2, u3) : Ω × [0, T ] → R3 and v = (v1, v2, v3) : Ω × [0, T ] → R3 are the controls, and χω is the
characteristic function of ω.We denote the variables of the functions y, p,B, u, and v by x = (x1, x2, x3)
(belonging to Ω) and t. The vector function f : (f1, f2, f3) : Ω → R3 is the know density of the external
forces, and the vector fields y0 : Ω → R3 and B0 : Ω → R3 are the given initial velocity and magnetic
fields, respectively. The operator P is the Leray projector.

Although there are controllability results for this system, see [24, 5], a possible problem could be
control to the trajectories with reduced scalar controls. However, notice that the simpler problem of
the controllability to the trajectories of the Navier-Stokes system with N − 1 scalar controls is still
open. On the other hand, following our approach, if we linearize around zero, we find a decoupled
system, which means that both control u and v would have to be active. Nonetheless, it seems plausible
to believe that an insensitizing control result for this system could obtained if both control u and v are
allowed to be active, even if only some of their components.

A Proof of Lemma 2.3

Before we begin, we present a Carleman estimate which is proved in [9], which we are going to use in its
proof, and it is as follow:

Lemma A.1. There exists a constant λ0, such that, for any λ > λ0 there exist two constants C(λ) > 0 and
s0(λ) > 0 such that for any i ∈ {1, . . . , N}, any g ∈ L2(Q)N and any u0 ∈ H, the solution of ut −∆u+∇p = g, ∇ · u = 0 in Q,

u = 0 on Σ,
u(0) = u0 in Ω,

(A.1)

satisfies

s4
∫∫
Q

e−13sα∗
(ξ∗)4|u|2dx dt ≤ C

∫∫
Q

e−11sα∗
|g|2dx dt+ s7

N∑
j=1
j ̸=i

∫∫
ω×(0,T )

e−2sα̂−11sα∗
(ξ̂)7|uj |2dxdt

 ,

for every s ≥ s0.
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We are going to develop here the duality method introduced in [27] in the context of the heat equation.
The same argument has already been used in the context of the heat equation with nonhomogeneous Robin
boundary conditions in [15] and in the context of the heat equation with right-hand side belonging to
L2(0, T ;H−2(Ω)) ∩H−1(0, T ;L2(Ω)), wich only permits to talk about solutions in L2(Q); this is explained
with detail in [16].

Proof. First, we view u as a solution by transposition of (2.3). This means that u is the unique function in
L2(Q)N satisfying∫∫

Q

ugdxdt =

∫∫
Q

f0ϕdxdt−
∫∫
Q

f1 · ∇ϕdxdt+
∫
Ω

u0ϕ(0)dx, ∀g ∈ L2(Q)N , (A.2)

where we have denoted by ϕ ∈ L2(0, T ;H2(Ω)N ∩ V ) ∩ H1(0, T ;L2(Ω)N ), together with pϕ, the (strong)
solution of the following problem: −ϕt −∆ϕ+∇pϕ = g, ∇ · ϕ = 0 in Q,

ϕ = 0 on Σ,
ϕ(T ) = 0 in Ω.

(A.3)

Let us first get an estimate of the lower order term in the left-hand side of (2.4), i.e.

s4
∫∫
Q

e−13sα∗
(ξ∗)4|u|2dx dt. (A.4)

Let us introduce the space

Z0 = {(ϕ, pϕ) ∈ C2(Q)× C1(Q) : ϕ = 0 on Σ and ∇ · ϕ = 0 in Ω}

and the norm ∥ · ∥Z , with

∥(ϱ, pϱ)∥2Z =

∫∫
Q

e−11sα∗
|ϱt −∆ϱ+∇pϱ|2dxdt+ s7

∫∫
ω×(0,T )

e−2sα̂−11sα∗
(ξ̂)7|(ϱ1, 0)|2dxdt,

for all (ϱ, pϱ) ∈ Z0. Due to Lemma A.1, ∥ · ∥Z is indeed a norm in Z0. Let Z be the completion of Z0 for
the norm ∥ · ∥Z . Then Z is a Hilbert space for the scalar product (·, ·)Z , with

((σ, pσ), (γ, pγ))Z =

∫∫
Q

e−11sα∗
(σt −∆σ +∇pσ)(γt −∆γ +∇pγ)dx dt

+ s7
∫∫

ω×(0,T )

e−2sα̂−11sα∗
(ξ̂)7σ1γ1dx dt.

Then, using Lax Milgram’s Lemma there is a unique solution (σ̄, p̄σ̄) ∈ Z such that

((σ̄, p̄σ̄), (σ, pσ))Z = l(σ, pσ), ∀(σ, pσ) ∈ Z, (A.5)

where

l(σ, pσ) = s4
∫∫
Q

e−13sα∗
(ξ∗)4uσdxdt.

By virtue of Lemma A.1, one can easily check that l ∈ Z ′.
We define: {

ϕ̂ = e−11sα∗
(σ̄t −∆σ̄ +∇p̄σ̄),

v̂ = −s7e−2sα̂−11sα∗
(σ̄1, 0).

(A.6)

20



Recall that σ̄ = (σ̄1, σ̄2). Then, (ϕ̂, v̂) is solution of (A.3) and such that

∥(σ̄, p̄σ̄)∥2Z = ((σ̄, p̄σ̄), (σ̄, p̄σ̄))Z = l(σ̄, p̄σ̄).

Let us now take g = s4e−13sα∗
(ξ∗)4u+ v̂1ω in (A.2). This gives

s4
∫∫
Q

e−13sα∗
(ξ∗)4|u|2dxdt =

∫∫
Q

f0ϕ̂dxdt−
∫∫
Q

f1 · ∇ϕ̂dxdt−
∫∫

ω×(0,T )

uv̂dxdt, (A.7)

(recall that v̂ and ϕ̂ are given by (A.6)).
From (A.5), we obtain

∥(σ̄, p̄σ̄)∥2Z ≤ ∥l∥Z′∥(σ̄, p̄σ̄)∥Z .

Consequently,

∥(σ̄, p̄σ̄)∥2Z =

∫∫
Q

e11sα
∗
|ϕ̂|2dx dt+ s−7

∫∫
ω×(0,T )

e2sα̂+11sα∗
|v̂|2dx dt ≤ Cs4

∫∫
Q

e−13sα∗
(ξ∗)4|u|2dx dt, (A.8)

for s ≥ C = C(Ω, ω, T ) > 0, since

∥l∥Z′ ≤ s2

∫∫
Q

e−13sα∗
(ξ∗)4|u|2dxdt

1/2

.

Now, we multiply the equation satisfied by ϕ̂ by s−7e2sα̂+11sα∗
(ξ̂)−7ϕ̂ and we integrate in Q. After integration

by parts, we get:

s−7

∫∫
Q

e2sα̂+11sα∗
(ξ̂)−7|∇ϕ̂|2dxdt = s−7

2

∫∫
Q

∂

∂t
(e2sα̂+11sα∗

(ξ̂)−7)|ϕ̂|2dxdt

+s−3

∫∫
Q

e2sα̂+6sα∗
(ξ̂)−3uϕ̂dxdt+ s−7

∫∫
ω×(0,T )

e2sα̂+11sα∗
(ξ̂)−7v̂ϕ̂dxdt. (A.9)

Using Holder’s inequality and Young’s inequality in the last two terms of the right-hand side of (A.9), we
have

s−7

∫∫
Q

e2sα̂+11sα∗
(ξ̂)−7|∇ϕ̂|2dxdt ≤C

∫∫
Q

e11sα
∗
|ϕ̂|2dxdt

+s−7

∫∫
ω×(0,T )

e2sα̂+11sα∗
|v̂|2dx dt+ s4

∫∫
Q

e−13sα∗
(ξ∗)4|u|2dx dt

 ,

where we have taken s ≥ C. This inequality, together with (A.8), provides∫∫
Q

e11sα
∗
|ϕ̂|2dx dt+ s−7

∫∫
Q

e2sα̂+11sα∗
(ξ̂)−7|∇ϕ̂|2dxdt

+s−7

∫∫
ω×(0,T )

e2sα̂+11sα∗
|v̂|2dx dt ≤ Cs4

∫∫
Q

e−13sα∗
(ξ∗)4|u|2dx dt. (A.10)
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A combination of this inequality with (A.7) yields the following estimate:

s4
∫∫
Q

e−13sα∗
(ξ∗)4|u|2dxdt ≤C

∫∫
Q

e−11sα∗
|f0|2dxdt+ s7

∫∫
Q

e−11sα∗
(ξ̂)7|f1|2dxdt

+s7
N∑
j=1
j ̸=i

∫∫
ω×(0,T )

e−2sα̂−11sα∗
(ξ̂)7|uj |2dxdt

 , (A.11)

Let us now show that the term associated with ∇u can also be bounded in the same way. To this end,
we multiply the equation of u by

s3e−13sα∗
(ξ∗)3−1/m

and we obtain

s3

2

∫∫
Q

e−13sα∗
(ξ∗)3−1/m ∂

∂t
|u|2dx dt+ s3

∫∫
Q

e−13sα∗
(ξ∗)3−1/m|∇u|2dxdt

=s3
∫∫
Q

e−13sα∗
(ξ∗)3−1/mf0udxdt− s3

∫∫
Q

e−13sα∗
(ξ∗)3−1/mf1 · ∇udx dt. (A.12)

Now, integrating by parts with respect to t in the first integral of the left-hand side of (A.12) and using that

(e−13sα∗
(ξ∗)3−1/m)t ≤ Cse−13sα∗

(ξ∗)4, s ≥ C,

we have at this moment,

s4
∫∫
Q

e−13sα∗
(ξ∗)4|u|2dxdt+ s3

∫∫
Q

e−13sα∗
(ξ∗)3−1/m|∇u|2dxdt ≤ C

∫∫
Q

e−11sα∗
|f0|2dx dt

+s7
∫∫
Q

e−11sα∗
(ξ̂)7|f1|2dx dt+ s7

N∑
j=1
j ̸=i

∫∫
ω×(0,T )

e−2sα̂−11sα∗
(ξ̂)7|uj |2dx dt

 , (A.13)

On the other hand, we consider

ũ := se−13/2sα∗
(ξ∗)1−1/mu := ρ4(t)u, h̃ := se−13/2sα∗

(ξ∗)1−1/mh := ρ4(t)h.

Then, (ũ, h̃) satisfies the following system: ũt −∆ũ+∇h̃ = −(ρ4)tu+ ρ4f0 + ρ4∇ · f1, ∇ · ũ = 0 in Q,
ũ = 0 on Σ,
ũ(0) = 0 in Ω.

(A.14)

Applying certain regularity result and using L2(Ω)N ⊂ H−1(Ω)N , we have that

∥ũ∥2L2(0,T ;H1(Ω)N ) + ∥h̃∥2L2(Q) ≤ C
(
∥ρ4f0∥2L2(Q)N + ∥ρ4f1∥2L2(Q)N + ∥(ρ4)tu∥2L2(Q)N

)
.

for some C > 0. Then, since |(ρ4)t| ≤ Cs2e−13/2sα∗
(ξ∗)2, we can add the term associated with the pressure

to the left-hand side of (A.13). Finally, we obtain (2.4).
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B Proof of Proposition 3.2

In this occasion, we will prove the Carleman estimate of ψ following a method introduced in [12]. For
simplicity of the proof, we will consider the case N = 2 and i = 2.

Proof. First, we apply the divergence operator to equation associated with ψ to obtain

∆h = ∇ · gψ = 0 in Q.

Then, applying the operator ∇∇∇∆2(·) to the equation satisfied be ψ1, we have:

(∇∇∇∆2ψ1)t −∆(∇∇∇∆2ψ1) = ∇∇∇∆2gψ1 .

Thus, we can apply Lemma 2.1 to this equation to obtain∫∫
Q

e−10sα

(
s−1ξ−1|∇∇∇∇∆2ψ1|2 + sξ|∇∇∇∆2ψ1|2

)
dx dt

≤ C

(∥∥∥s−1/4e−5sαξ−1/4+1/m∇∇∇∆2ψ1

∥∥∥2
L2(Σ)8

+
∥∥∥s−1/4e−5sαξ−1/4∇∇∇∆2ψ1

∥∥∥2
H1/4,1/2(Σ)8

+s

∫∫
ω0×(0,T )

e−10sαξ|∇∇∇∆2ψ1|2dxdt+
∫∫
Q

e−10sα|∇2∆2gψ1 |2dxdt

 , (B.1)

for every s ≥ C.
We divide the rest of the proof in three steps:

• In Step 1, we estimate globals integrals of ψ1 y ψ2 by the left-hand side of (B.1).

• In Step 2, we deal with the boundary terms en (B.1).

• In Step 3, we estimate all the local terms.

In the following, C denotes a constant depending only on λ, Ω, ω, O y ℓ.

Step 1
Estimate of ψ1 : Applying successively Lemma 2.2 with r = 1 and u := ∇∇∆2ψ1, r = 3 and u = ∇∆2ψ1,
r = 5 and u = ∆2ψ1, and combining with (B.1), we get

s−1

∫∫
Q

e−10sαξ−1|∇∇∇∇∆2ψ1|2dx dt+s
∫∫
Q

e−10sαξ|∇∇∇∆2ψ1|2dxdt+s3
∫∫
Q

e−10sαξ3|∇∇∆2ψ1|2dx dt

+s5
∫∫
Q

e−10sαξ5|∇∆2ψ1|2dxdt+ s7
∫∫
Q

e−10sαξ7|∆2ψ1|2dxdt ≤ C

∥∥∥s−1/4e−5sαξ−1/4+1/m∇∇∇∆2ψ1

∥∥∥2
L2(Σ)8

+
∥∥∥s−1/4e−5sαξ−1/4∇∇∇∆2ψ1

∥∥∥2
H

1
4
, 1
2 (Σ)8

+s

∫∫
ω0×(0,T )

e−10sαξ|∇∇∇∆2ψ1|2dxdt+s3
∫∫

ω0×(0,T )

e−10sαξ3|∇∇∆2ψ1|2dxdt

+ s5
∫∫

ω0×(0,T )

e−10sαξ5|∇∆2ψ1|2dxdt +s7
∫∫

ω0×(0,T )

e−10sαξ7|∆2ψ1|2dxdt+
∫∫
Q

e−10sα|∇2∆2gψ1 |2dx dt

 ,

(B.2)

for every s ≥ C.
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Estimate of ψ2 : Now, we would like to introduce in the left-hand side a term in ψ = (ψ1, ψ2). Actually, we
are going to add the term

∥∥s7/2e−5sα∗
(ξ∗)7/2ψ

∥∥
L2(0,T ;H2(Ω)N )

to the left-hand side of (B.2).

Notice that, since ∇ · ψt = 0 in Q, we have for all t ∈ (0, T ) :∫
Ω

|∂2(ψ2)t(t)|2dx =

∫
Ω

|∂1(ψ1)t(t)|2dx

≤
∫
Ω

|∇(ψ1)t(t)|2dx.
(B.3)

Since (ψ2)t(t)|∂Ω = 0 and Ω is bounded, also, using (B.3), we have∫
Ω

|(ψ2)t(t)|2dx ≤ C

∫
Ω

|∇(ψ1)t(t)|2dx.

Then, we deduce
∥ψt(t)∥2L2(Ω)N ≤ C ∥∇(ψ1)t(t)∥2L2(Ω)N , ∀t ∈ (0, T ). (B.4)

Consider now the following Stokes system, −∆ψ +∇h = −ψt + gψ in Q,
∇ · ψ = 0 in Q,
ψ = 0 on ∂Ω,

(B.5)

then, using a regularity result of [37] for the stationary Stokes problem (B.5), together with (B.4), we obtain

∥ψ(t)∥2H2(Ω)N ≤ C
(
∥∇(ψ1)t(t)∥2L2(Ω)N +

∥∥gψ(t)∥∥2
L2(Ω)N

)
, ∀t ∈ (0, T ). (B.6)

Now, observe that using the divergence free condition and applying the laplacian operator to the equation
associated with ψ1, we get that (∆ψ1)t = ∆2ψ1+∆gψ1 in Q. On the other hand, since (ψ1)t|∂Ω = 0, we have

∥(ψ1)t∥2H2(Ω) ≤ C ∥∆(ψ1)t∥L2(Ω) . (B.7)

Using (B.7) in (B.6), we obtain

∥ψ(t)∥2H2(Ω)N ≤C
(
∥∆2ψ1(t)∥2L2(Ω) + ∥∆gψ(t)∥2L2(Ω)N

)
, ∀t ∈ (0, T ).

Finally, since α∗ and ξ∗ do not depend on the space variable x, we have that

s7
T∫

0

e−10sα∗
(ξ∗)7 ∥ψ∥2H2(Ω)N dt ≤Cs7

∫∫
Q

e−10sα∗
(ξ∗)7|∆2ψ1|2dxdt

+

∫∫
Q

e−10sα∗
(ξ∗)7|∆gψ|2dx dt

 . (B.8)
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Therefore, combining (B.2) and (B.8) we get

s−1

∫∫
Q

e−10sαξ−1|∇∇∇∇∆2ψ1|2dxdt+s
∫∫
Q

e−10sαξ|∇∇∇∆2ψ1|2dxdt+s3
∫∫
Q

e−10sαξ3|∇∇∆2ψ1|2dxdt

+ s5
∫∫
Q

e−10sαξ5|∇∆2ψ1|2dx dt+ s7
∫∫
Q

e−10sαξ7|∆2ψ1|2dxdt+ s7
∫∫
Q

e−10sα∗
(ξ∗)7|ψ|2dxdt

+s7
∫∫
Q

e−10sα∗
(ξ∗)7|∇ψ|2dx dt+ s7

∫∫
Q

e−10sα∗
(ξ∗)7 |∆ψ|2 dxdt ≤ C

∥∥∥s−1/4e−5sαξ−1/4+1/m∇∇∇∆2ψ1

∥∥∥2
L2(Σ)8

+
∥∥∥s−1/4e−5sαξ−1/4∇∇∇∆2ψ1

∥∥∥2
H

1
4
, 1
2 (Σ)8

+ s

∫∫
ω0×(0,T )

e−10sαξ|∇∇∇∆2ψ1|2dxdt

+ s3
∫∫

ω0×(0,T )

e−10sαξ3|∇∇∆2ψ1|2dxdt+ s5
∫∫

ω0×(0,T )

e−10sαξ5|∇∆2ψ1|2dxdt+ s7
∫∫

ω0×(0,T )

e−10sαξ7|∆2ψ1|2dxdt

+s7
∫∫
Q

e−10sα|∇∇∆2gψ|2dxdt+ s7
∫∫
Q

e−10sα∗
(ξ∗)7|∆gψ|2dxdt

 , (B.9)

for every s ≥ C.

Step 2
In this step we treat the boundary terms in (B.9). We begin with the first one. Notice that the minimum of
the weight functions esα and ξ is reached at the boundary ∂Ω, where α = α∗ and ξ = ξ∗ do not depend on
x. Since m ≥ 14, and using Young inequality, we obtain∥∥∥e−5sα∗

(ξ∗)−1/4+1/m∇∇∇∆2ψ1

∥∥∥2
L2(Σ)8

≤C
∥∥∥e−5sα∗

∇∇∇∆2ψ1

∥∥∥2
L2(Σ)8

≤C
(∥∥∥s1/2e−5sα∗

(ξ∗)1/2∇∇∇∆2ψ1

∥∥∥
L2(Q)8

·
∥∥∥s−1/2e−5sα∗

(ξ∗)−1/2∇∇∇∇∆2ψ1

∥∥∥
L2(Q)16

+
∥∥∥e−5sα∗

(ξ∗)1/2∇∇∇∆2ψ1

∥∥∥2
L2(Q)8

)

≤C

s−1

∫∫
Q

e−10sαξ−1|∇∇∇∇∆2ψ1|2dxdt+ s

∫∫
Q

e−10sαξ|∇∇∇∆2ψ1|2dxdt

 .

Therefore, this boundary term can be absorbed by left-hand side of (B.9) for s ≥ C.
Now, we deal the second boundary term in the right-hand side of (B.9). To this end, we use regularity

estimates.
First, notice that ∥s7/2e−5sα∗

(ξ∗)7/2ψ∥2L2(0,T ;V ) = ∥s7/2e−5sα∗
(ξ∗)7/2ψ∥2X0

is in the left-hand side of (B.9).
Let us define

(ψ1, h1) := s5/2e−5sα∗
(ξ∗)5/2−1/m(ψ, h) =: ξ1(t)(ψ, h).

Then, from (3.3), (ψ1, h1) is the solution of Stokes system: ψ1
t −∆ψ1 +∇h1 = (ξ1)tψ + ξ1g

ψ, ∇ · ψ1 = 0 in Q,
ψ1 = 0 on Σ,
ψ1(0) = 0 in Ω,

(B.10)

Using Lemma 2.6 for the last system, we have

∥ψ1∥2X1
≤ C

(
∥(ξ1)tψ∥2X0

+ ∥ξ1gψ∥2X0

)
.
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From (2.1), we see that
|(ξ1)t| ≤ Cs7/2e−5sα∗

(ξ∗)7/2,

for every s ≥ C. Thus, we obtain

∥∥ψ1
∥∥2
X1

≤ C

(∥∥∥s7/2e−5sα∗
(ξ∗)7/2ψ

∥∥∥2
X0

+
∥∥ξ1gψ∥∥2X0

)
.

Next, we introduce:

(ψ2, h2) := s3/2e−5sα∗
(ξ∗)3/2−2/m(ψ, h) =: ξ2(t)(ψ, h).

Now, from (3.3), (ψ2, h2) is the solution of Stokes system: ψ2
t −∆ψ2 +∇h2 = (ξ2)tψ + ξ2g

ψ, ∇ · ψ2 = 0 in Q,
ψ2 = 0 on Σ,
ψ2(0) = 0 in Ω,

(B.11)

Using Lemma 2.6 for the last system, we find:∥∥ψ2
∥∥2
X2

≤ C
(
∥(ξ2)tψ∥2X1

+ ∥ξ2gψ∥2X1

)
.

Using the estimate
|(ξ2)t| ≤ Cs5/2e−5sα∗

(ξ∗)5/2−1/m,

for every s ≥ C. Thus, we obtain

∥∥ψ2
∥∥2
X2

≤C
(∥∥∥s5/2e−5sα∗

(ξ∗)5/2−1/mψ
∥∥∥2
X1

+
∥∥ξ2gψ∥∥2X1

)
.

≤C
(∥∥∥s7/2e−5sα∗

(ξ∗)7/2ψ
∥∥∥2
X0

+
∥∥ξ1gψ∥∥2X0

+
∥∥ξ2gψ∥∥2X1

)
.

Next, we define:
(ψ3, h3) := s1/2e−5sα∗

(ξ∗)1/2−3/m(ψ, h) =: ξ3(t)(ψ, h).

Then, from (3.3), (ψ3, h3) is the solution of Stokes system: ψ3
t −∆ψ3 +∇h3 = (ξ3)tψ + ξ3g

ψ, ∇ · ψ3 = 0 in Q,
ψ3 = 0 on Σ,
ψ3(0) = 0 in Ω,

(B.12)

Using Lemma 2.6 for the last system, we get:∥∥ψ3
∥∥2
X3

≤ C
(
∥(ξ3)tψ∥2X2

+
∥∥ξ3gψ∥∥2X2

)
.

Using the estimate
|(ξ3)t| ≤ Cs3/2e−5sα∗

(ξ∗)3/2−2/m,

for every s ≥ C. Thus, we obtain∥∥ψ3
∥∥2
X3

≤C
(∥∥ψ2

∥∥2
X2

+
∥∥ξ3gψ∥∥2X2

)
.

≤C
(∥∥∥s7/2e−5sα∗

(ξ∗)7/2ψ
∥∥∥2
X0

+
∥∥ξ1gψ∥∥2X0

+
∥∥ξ2gψ∥∥2X1

+
∥∥ξ3gψ∥∥2X2

)
.

Next, we introduce:

(ψ4, h4) := s−1/2e−5sα∗
(ξ∗)−1/2−4/m(ψ, h) =: ξ4(t)(ψ, h).
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Then, from (3.3), (ψ4, h4) is the solution of Stokes system: ψ4
t −∆ψ4 +∇h4 = (ξ4)tψ + ξ4g

ψ, ∇ · ψ4 = 0 in Q,
ψ4 = 0 on Σ,
ψ4(0) = 0 in Ω,

(B.13)

Using Lemma 2.6 for the last system, we find:∥∥ψ4
∥∥2
X4

≤ C
(
∥(ξ4)tψ∥2X3

+
∥∥ξ4gψ∥∥2X3

)
.

Using the estimate
|(ξ4)t| ≤ Cs1/2e−5sα∗

(ξ∗)1/2−3/m,

for every s ≥ C. Thus, we obtain∥∥ψ4
∥∥2
X4

≤C
(∥∥ψ3

∥∥2
X3

+
∥∥ξ4gψ∥∥2X3

)
.

≤C
(∥∥∥s7/2e−5sα∗

(ξ∗)7/2ψ
∥∥∥2
X0

+
∥∥ξ1gψ∥∥2X0

+
∥∥ξ2gψ∥∥2X1

+
∥∥ξ3gψ∥∥2X2

+
∥∥ξ4gψ∥∥2X3

)
.

Then, using interpolation argument between the spaces X3 and X4, we get∥∥∥e−5sα∗
(ξ∗)−7/(2m)ψ

∥∥∥2
L2(0,T ;H8(Ω)N )∩H1(0,T ;H6(Ω)N )

≤C
(∥∥∥s1/2e−5sα∗

(ξ∗)1/2−3/mψ
∥∥∥
X3

·
∥∥∥s−1/2e−5sα∗

(ξ∗)−1/2−4/mψ
∥∥∥
X4

)
.

Now, we consider the boundary term

s−1/2
∥∥∥e−5sα∗

(ξ∗)−1/4∇∇∇∆2ψ1

∥∥∥2
H1/4,1/2(Σ)8

≤C
(
s−1/2

∥∥∥e−5sα∗
(ξ∗)−1/4∇∇∇∆2ψ1

∥∥∥2
H1(0,T ;H−1(Ω)N )

+ s−1/2
∥∥∥e−5sα∗

(ξ∗)−1/4∇∇∇∆2ψ1

∥∥∥2
L2(0,T ;H1(Ω)N )

)
.

≤C
(
s−1/2

∥∥∥e−5sα∗
(ξ∗)−1/4ψ1

∥∥∥2
L2(0,T ;H8(Ω)N )

+ s−1/2
∥∥∥e−5sα∗

(ξ∗)−1/4ψ1

∥∥∥2
H1(0,T ;H6(Ω)N )

)
.

=Cs−1/2
∥∥∥e−5sα∗

(ξ∗)−1/4ψ1

∥∥∥2
L2(0,T ;H8(Ω)N )∩H1(0,T ;H6(Ω)N )

.

≤Cs−1/2
∥∥∥e−5sα∗

(ξ∗)−7/(2m)ψ
∥∥∥2
L2(0,T ;H8(Ω)N )∩H1(0,T ;H6(Ω)N )

. (B.14)

By taking s large enough in (B.14), the boundary term s−1/2
∥∥e−5sαξ−1/4ψ

∥∥
H1/4,1/2(Σ)16

can be absorbed

by the term
∥∥e−5sα∗

(ξ∗)−7/(2m)ψ
∥∥2
L2(0,T ;H8(Ω)N )∩H1(0,T ;H6(Ω)N )

and step 2 is finished.
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Thus, at this point we have

s−1

∫∫
Q

e−10sαξ−1|∇∇∇∇∆2ψ1|2dxdt+ s

∫∫
Q

e−10sαξ|∇∇∇∆2ψ1|2dxdt

+ s3
∫∫
Q

e−10sαξ3|∇∇∆2ψ1|2dxdt+ s5
∫∫
Q

e−10sαξ5|∇∆2ψ1|2dx dt+ s7
∫∫
Q

e−10sαξ7|∆2ψ1|2dxdt

+ s7
∫∫
Q

e−10sα∗
(ξ∗)7|ψ|2dxdt+ s7

∫∫
Q

e−10sα∗
(ξ∗)7|∇ψ|2dxdt+ s7

∫∫
Q

e−10sα∗
(ξ∗)7|∆ψ|2dxdt

≤ C

s ∫∫
ω0×(0,T )

e−10sαξ|∇∇∇∆2ψ1|2dxdt+ s3
∫∫

ω0×(0,T )

e−10sαξ3|∇∇∆2ψ1|2dxdt

+ s5
∫∫

ω0×(0,T )

e−10sαξ5|∇∆2ψ1|2dxdt+ s7
∫∫

ω0×(0,T )

e−10sαξ7|∆2ψ1|2dxdt+ s7
∫∫
Q

e−10sα∗
(ξ∗)7|∆gψ|2dx dt

+s7
∫∫

Q

e−10sα|∇∇∆2gψ|2dxdt+ ∥ξ1gψ∥2X0
+ ∥ξ2gψ∥2X1

+ ∥ξ3gψ∥2X2
+ ∥ξ4gψ∥2X3

)
, (B.15)

for every s ≥ C.

Step 3
In this step, we estimate the first three terms in the right-hand side of (B.15) in terms of ∆2ψ1 and small

constants multiplied by the left-hand side of (B.15).
We start by estimating the term on ∇∇∇∆2ψ1. Let ω1 be an open subset satisfying ω0 ⋐ ω1 ⋐ ω̃ and

let ρ1 ∈ C2
c (ω1) with ρ1 ≡ 1 in ω0 and 0 ≤ ρ1. Then, an integration by parts gives

s

∫∫
ω0×(0,T )

e−10sαξ
∣∣∇∇∇∆2ψ1

∣∣2 dxdt ≤s ∫∫
ω1×(0,T )

ρ1e
−10sαξ

∣∣∇∇∇∆2ψ1

∣∣2 dxdt.
=− s

∫∫
ω1×(0,T )

ρ1e
−10sαξ∇∇∆2ψ1(∇∇∇∇∆2ψ1)dx dt

+
s

2

∫∫
ω1×(0,T )

∆(ρ1e
−10sαξ)

∣∣∇∇∇∆2ψ1

∣∣2 dxdt.
Using the Cauchy-Schwarz’s inequality for the first term and property (2.2) for the second one, we obtain
for every ϵ > 0

s

∫∫
ω0×(0,T )

e−10sαξ
∣∣∇∇∇∆2ψ1

∣∣2 dx dt ≤Cs3 ∫∫
ω1×(0,T )

e−10sαξ3
∣∣∇∇∆2ψ1

∣∣2 dxdt
+ ϵs−1

∫∫
Q

e−10sαξ−1
∣∣∇∇∇∇∆2ψ1

∣∣2 dxdt, (B.16)

for every s ≥ C (C depending also on ϵ).
Repeating the same argument we can obtain the estimates of ∇∇∆2ψ1 in terms of ∇∆2ψ1 and ∇∆2ψ1

in terms of ∆2ψ1, namely

s3
∫∫

ω1×(0,T )

e−10sαξ3
∣∣∇∇∆2ψ1

∣∣2 dxdt ≤Cs5 ∫∫
ω2×(0,T )

e−10sαξ5
∣∣∇∆2ψ1

∣∣2 dxdt
+ ϵs

∫∫
Q

e−10sαξ
∣∣∇∇∇∆2ψ1

∣∣2 dxdt, (B.17)
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s5
∫∫

ω2×(0,T )

e−10sαξ5
∣∣∇∆2ψ1

∣∣2 dx dt ≤Cs7 ∫∫
ω3×(0,T )

e−10sαξ7
∣∣∆2ψ1

∣∣2 dx dt
+ ϵs3

∫∫
Q

e−10sαξ3
∣∣∇∇∆2ψ1

∣∣2 dxdt, (B.18)

for every s ≥ C (C depending also on ϵ), where ω1 ⋐ ω2 ⋐ ω3 ⋐ ω̃.
This estimate, together with (B.15), (B.16) and (B.17), readily gives the desired Carleman inequality

(3.4). This concludes the proof of Proposition 3.2.

C Proof of Lemma 4.2

We are going to prove that e4sβ
∗
(γ∗)−14−14/mẑ ∈ L2(Q)N using a method introduced in [10], which consists

of increasing the regularity of the function ẑ through certain weight functions involved in order to then be
able to apply a local inverse theorem in a sufficiently regular space (more details, see Section 5).

Proof. Next, we define the following functions:

(z∗,0, p∗,0) := e4sβ
∗
(γ∗)−5−5/m(ẑ, p̂1), f

z
∗,0 := e4sβ

∗
(γ∗)−5−5/m(fz +∇× ((∇× ŵ)χ)).

Notice that fz∗,0 ∈ L2(0, T ;H−1(Ω)N ), since this function can be written as:

fz∗,0 = e−3sβ∗
(γ∗)−5−5/m(e7sβ

∗
fz) + (γ∗)−4−4/m∇× ((∇× w∗)χ) ,

where e−3sβ∗
(γ∗)−5−5/m and (γ∗)−4−4/m are bounded; also, using (4.4); in dimension 2, we can consider

χ = 1O, then (∇ × w∗)1O ∈ L2(Q)2, and, on the other hand, in dimension 3, we have that (∇ × w∗)χ
belongs to L2(0, T ;H1(Ω)3), and as H1(Ω)3 ⊂ L2(Ω)3, we obtain (∇× w∗)χ ∈ L2(Q)3.

Then, by (4.9) z∗,0 satisfies L∗z∗,0 +∇p∗,0 = fz∗,0 − (e4sβ
∗
(γ∗)−5−5/m)tẑ, ∇ · z∗,0 = 0 in Q,

z∗,0 = 0 on Σ,
z∗,0(T ) = 0 in Ω,

where the last term in the right-hand side can be written as

(e4sβ
∗
(γ∗)−5−5/m)tẑ = c4(t)(L∗

H)4z̃,

where ck(t) denotes a generic function such that (see (2.2))

|c(ℓ)k (t)| ≤ C <∞, ∀ℓ = 0, . . . , k. (C.1)

On the other hand, for any h ∈ Y3,0, we obtain∫∫
Q

z∗,0 · hdxdt =
∫∫
Q

〈
fz∗,0,Φ

〉
L2(0,T ;H−1(Ω)N ),L2(0,T ;H1

0 (Ω)N )
dxdt−

∫∫
Q

c4(t)(L∗)4H z̃ · Φdxdt, (C.2)

where Φ solves, together some pressure πΦ, LΦ+∇πΦ = h, ∇ · Φ = 0 in Q,
Φ = 0 on Σ,
Φ(0) = 0 in Ω.
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Using (4.12), we can integrate by parts to obtain∫∫
Q

z∗,0 · hdx dt =
∫∫
Q

〈
fz∗,0,Φ

〉
L2(0,T ;H−1(Ω)N ),L2(0,T ;H1

0 (Ω)N )
dx dt−

∫∫
Q

(L∗
H)3z̃ · (L[c4(t)Φ] +∇(c4(t)h))dxdt,

=

∫∫
Q

〈
fz∗,0,Φ

〉
L2(0,T ;H−1(Ω)N ),L2(0,T ;H1

0 (Ω)N )
dx dt

−
∫∫
Q

z̃ ·
(
c
(4)
4 (t)Φ + L[c(3)4 (t)Φ] + L2[c

(2)
4 (t)Φ] + L3[c

(1)
4 (t)Φ] + L3[c4(t)h]

)
dxdt.

Notice that here we have relied on the fact that L∗
H z̃, Φ and h belong to the space H. Since∥∥Φ∥∥

Y4
≤ C

∥∥h∥∥
Y3,0

,

(see regularity result (2.7)), we obtain from the last equality, together with (C.1),∫∫
Q

z∗,0 · hdxdt ≤ C
[∥∥fz∗,0∥∥L2(0,T ;H−1(Ω)N )

+ ∥z̃∥L2(Q)N

]
∥h∥Y3,0 , ∀h ∈ Y3,0. (C.3)

Now, let

(z∗,1, p∗,1) := e4sβ
∗
(γ∗)−9−9/m(ẑ, p̂1), f

z
∗,1 := e4sβ

∗
(γ∗)−9−9/m(fz +∇× ((∇× ŵ)χ)).

Similarly as before, (z∗,1, p∗,1) satisfies L∗z∗,1 +∇p∗,1 = fz∗,1 − (e4sβ
∗
(γ∗)−9−9/m)tẑ, ∇ · z∗,1 = 0 in Q,

z∗,1 = 0 on Σ,
z∗,1(T ) = 0 in Ω,

Thus, for any h ∈ Y2,0, we get∫∫
Q

z∗,1 · hdx dt =
∫∫
Q

〈
fz∗,1,Φ

〉
L2(0,T ;H−1(Ω)N ),L2(0,T ;H1

0 (Ω)N )
dx dt−

∫∫
Q

(e4sβ
∗
(γ∗)−9−9/m)tẑ · Φdx dt.

Moreover, since ∫∫
Q

(e4sβ
∗
(γ∗)−9−9/m)tẑ · Φdx dt =

∫∫
Q

c3(t)Φ · z∗,0dx dt.

using (C.3) with c3(t)Φ instead of h (notice that c3(t)Φ ∈ Y3,0), we get the estimate∫∫
Q

c3(t)Φ · z∗,0dxdt ≤ C
[
∥fz∗,0∥L2(0,T ;H−1(Ω)N ) + ∥z̃∥L2(Q)N

]
∥c3(t)Φ∥Y3,0 .

Going back to z∗,1, we have∫∫
Q

z∗,1 · hdxdt ≤ C
[ ∥∥fz∗,0∥∥L2(0,T ;H−1(Ω)N )

+ ∥z̃∥L2(Q)N

]
∥Φ∥Y3,0

,

where we have used (C.1) and the property (γ∗)−9−9/m ≤ C(γ∗)−5−5/m. Taking into account that

∥Φ∥Y3
≤ C∥h∥Y2,0

,

(see (2.6)) we obtain∫∫
Q

z∗,1 · hdxdt ≤ C
[
∥fz∗,0∥L2(0,T ;H−1(Ω)N ) + ∥z̃∥L2(Q)N

]
∥h∥Y2,0

, ∀h ∈ Y2,0. (C.4)
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Now, let

(z∗,2, p∗,2) := e4sβ
∗
(γ∗)−12−12/m(ẑ, p̂1), f

z
∗,2 := e4sβ

∗
(γ∗)−12−12/m(fz +∇× ((∇× ŵ)χ)).

Analogously, as before, (z∗,2, p∗,2) satisfies L∗z∗,2 +∇p∗,2 = fz∗,2 − (e4sβ
∗
(γ∗)−12−12/m)tẑ, ∇ · z∗,2 = 0 in Q,

z∗,2 = 0 on Σ,
z∗,2(T ) = 0 in Ω,

Thus, for any h ∈ Y1,0, we obtain∫∫
Q

z∗,2 · hdxdt =
∫∫
Q

〈
fz∗,2,Φ

〉
L2(0,T ;H−1(Ω)N ),L2(0,T ;H1

0 (Ω)N )
dxdt−

∫∫
Q

(e4sβ
∗
(γ∗)−12−12/m)tẑ · Φdx dt.

Moreover, since ∫∫
Q

(e4sβ
∗
(γ∗)−12−12/m)tẑ · Φdxdt =

∫∫
Q

c2(t)Φ · z∗,0dx dt.

using (C.4) with c2(t)Φ instead of h (notice that c2(t)Φ ∈ Y2,0), we get the estimate∫∫
Q

c2(t)Φ · z∗,0dxdt ≤ C
[
∥fz∗,0∥L2(0,T ;H−1(Ω)N ) + ∥z̃∥L2(Q)N

]
∥c2(t)Φ∥Y2,0

.

Turning back to z∗,2, we get∫∫
Q

z∗,2 · hdx dt ≤ C
[
∥fz∗,0∥L2(0,T ;H−1(Ω)N ) + ∥z̃∥L2(Q)N

]
∥Φ∥Y2,0

,

where we have used (C.1) and the property (γ∗)−12−12/m ≤ C(γ∗)−9−9/m. Taking into account that

∥Φ∥Y2
≤ C∥h∥Y1,0

,

(see (2.6)) we obtain∫∫
Q

z∗,2 · hdxdt ≤ C
[
∥fz∗,0∥L2(0,T ;H−1(Ω)N ) + ∥z̃∥L2(Q)N

]
∥h∥Y1,0 , ∀h ∈ Y1,0. (C.5)

Finally, we set

(z∗,3, p∗,3) := e4sβ
∗
(γ∗)−14−14/m(ẑ, p̂1), f

z
∗,3 := e4sβ

∗
(γ∗)−14−14/m(fz +∇× ((∇× ŵ)χ)).

Similarly as before, (z∗,3, p∗,3) satisfies L∗z∗,3 +∇p∗,3 = fz∗,3 − (e4sβ
∗
(γ∗)−14−14/m)tẑ, ∇ · z∗,3 = 0 in Q,

z∗,3 = 0 on Σ,
z∗,3(T ) = 0 in Ω.

Thus, for any h ∈ Y0, we obtain∫∫
Q

z∗,3 · hdxdt =
∫∫
Q

〈
fz∗,3,Φ

〉
L2(0,T ;H−1(Ω)N ),L2(0,T ;H1

0 (Ω)N )
dxdt−

∫∫
Q

(e4sβ
∗
(γ∗)−14−14/m)tẑ · Φdx dt.

Moreover, since ∫∫
Q

(e4sβ
∗
(γ∗)−14−14/m)tẑ · Φdx dt =

∫∫
Q

c1(t)Φ · z∗,0dx dt.
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using (C.5) with c1(t)Φ instead of h (notice that c1(t)Φ ∈ Y1,0), we get the estimate∫∫
Q

c1(t)Φ · z∗,0dxdt ≤ C
[
∥fz∗,0∥L2(0,T ;H−1(Ω)N ) + ∥z̃∥L2(Q)N

]
∥c1(t)Φ∥Y1,0

.

Turning back to z∗,3, we obtain∫∫
Q

z∗,3 · hdx dt ≤ C
[
∥fz∗,0∥L2(0,T ;H−1(Ω)N ) + ∥z̃∥L2(Q)N

]
∥Φ∥Y1,0

,

where we have used (C.1) and the property (γ∗)−14−14/m ≤ C(γ∗)−12−12/m. Taking into account that

∥Φ∥Y1,0
≤ C∥h∥Y0

,

(see (2.6)) we obtain∫∫
Q

z∗,3 · hdx dt ≤ C
[
∥fz∗,0∥L2(0,T ;H−1(Ω)N ) + ∥z̃∥L2(Q)N

]
∥h∥Y0 , ∀h ∈ Y0.

Thus, we deduce that z∗,3 ∈ L2(Q)N . The proof of Lemma 4.2 is complete.
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