Available online at www.sciencedirect.com

N . . JOURNAL
SciVerse ScienceDirect ﬂ

MATHEMATIQUES

PURES ET APPLIQUEES

o =
ELSEVIER J. Math. Pures Appl. 101 (2014) 27-53

www.elsevier.com/locate/matpur

Insensitizing controls with one vanishing component for the
Navier-Stokes system

N. Carrefo, M. Gueye *

Université Pierre et Marie Curie, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
Received 31 October 2012
Available online 15 March 2013

Abstract

In this paper we prove the existence of insensitizing controls, having one vanishing component, for the local L%-norm of the
solutions of the Navier—Stokes system. This problem can be recast as a null controllability problem for a nonlinear cascade system.
We first prove a controllability result, with controls having one vanishing component, for a linear problem. Then, by means of an
inverse mapping theorem, we deduce the controllability for the cascade system.
© 2013 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article on démontre I’existence de controles insensibilisants, ayant une composante nulle, pour la norme L? locale de la
solution du systeme de Navier—Stokes. Ce type de probleme peut étre reformulé comme un probléme de contrdlabilité & zéro pour
un systeme en cascade non linéaire. On démontre d’abord un résultat de controlabilité, avec un contrdle ayant une composante
nulle, pour le probleme linéarisé. La controlabilité du systeme en cascade s’en déduit par des arguments d’inversion locale.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let £2 be a nonempty bounded connected open subset of RY (N =2 or 3) of class C®. Let T > 0 and let
w C £2 be a (small) nonempty open subset which is the control set. We will use the notation Q = £2 x (0, T) and
X =982 x (0, T). Let us also introduce another open set O C §2 which is called the observatory or observation set.
Let us recall the definition of some usual spaces in the context of incompressible fluids:

V={yeHy()": V-y=0in 2}

and
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H={yeLl*@":V-y=0in2, y-n=00n3£}.
We introduce the following Navier—Stokes control system with incomplete data

y—Ay+ @ -V)y+Vp=f+vl, V-y=0 inQ,
y=0 on X, (1.1
y0) =y"+1§° in £2,

where v = (vj)1gjgw is the control function, f € L?2(Q)V is a given externally applied force and the initial state
¥(0) is partially unknown in the following sense:

e y € H is known,
e $° € H is unknown with [|$°]|2oyv =1, and
e 7 is a small unknown real number.

We observe the solution of system (1.1) via some functional J; (y), which is called the sentinel. Here, the sentinel
is given by the square of the local L?-norm of the state variable:

1
T () =3 f/ ly|> dx dt. (1.2)
Ox(0,T)

The insensitizing control problem is to find v such that the uncertainty in the initial data does not affect the
measurement J;, at least at the first order, i.e.,

3J:(y)

—0 V§°e L2(2)" such that || °]
81’ =0

@ = 1. (1.3)

If (1.3) holds, we say that v insensitizes the functional J;. This kind of problem was first considered by J.-L. Lions
in [17]. This particular form of the sentinel J; allows us to reformulate the insensitization problem as a controllability
problem for a cascade system (for more details, see [2] or [ 16], for instance). In particular, condition (1.3) is equivalent
to z(0) =0 in £2, where z, together with w, solves the following coupled system:

w,—Aw+(w~V)w+Vp0:f+v]lw, V-w=0 in Q,
—z;—Az—i—(Z‘Vt)w—(qu)z—i—Vq:w]l@, V.z=0 1inQ, (1.4)
w=z=0 on X,
w(©0)=y", Z(T)=0 in 2.

Here, (w, p°) is the solution of system (1.1) for T = 0, the equation of z corresponds to a formal adjoint of the equation
satisfied by the derivative of y with respect to T at T = 0 and we have denoted:

N
((Z,V’)w)i =Zz,~8iwj, i=1,...,N.
=1

Most known results around this type of controllability problem concern parabolic system of the heat kind. In [2], the
authors proved the existence of e-insensitizing controls (i.e., such that |9, J; (¥)|;=o| < &) for solutions of a semilinear
heat system with C! and globally Lipschitz nonlinearities and in [22], the author proved the existence of insensitizing
controls for the same system. In [10], the author treated the case of a different type of sentinel, namely the gradient of
the solution of a heat equation with potentials.

For the Stokes system, the first results were obtained in [11] when the sentinel is given by (1.2) or by the curl of
the solution. In [12], the author proved the existence of insensitizing controls for the Navier—Stokes system. The main
goal of this paper is to establish the existence of insensitizing controls for the Navier—Stokes system (1.1) having one
vanishing component, that is, v; = 0 for any given i € {1, ..., N}.

In this subject, the first results were obtained in [8] for the local exact controllability to the trajectories of the
Navier-Stokes and Boussinesq systems when the closure of the control set w intersects the boundary of £2. Later, this
geometric assumption was removed for the Stokes system in [5], for the local null controllability of the Navier—Stokes
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system in [4] and for the Boussinesq system in [3]. See also [6] for local null controllability of the 2-dimensional
Navier—Stokes system in a torus with controls having one vanishing component.

We will suppose that w N O # @, which is a condition that has always been imposed as long as insensitizing controls
are concerned. However, in [23], it has been proved that this is not a necessary condition for g-insensitizing controls
for some linear parabolic equations (see also [19]).

In [22], the author proved for the linear heat equation that we cannot expect insensitivity to hold for all initial data,
except when the control acts everywhere in £2. Thus, we shall assume that y© = 0 which is a classical hypothesis in
insensitization problems.

The main result is stated in the following theorem:

Theorem 1.1. Let i € {1,..., N} and m > 10 be a real number. Assume that w N O # @ and y° = 0. Then, there exist
8> 0and C > 0, depending on w, 2, © and T, such that for any f € L*>(Q)N satisfying ||eC/tmf||L2(Q)N < 4, there

exists a control v € L2(Q)N with v; = 0 such that the corresponding solution (w, z) to (1.4) satisfies z(0) =0 in 2.

To prove Theorem 1.1 we follow a standard approach introduced in [9] (see also [4,7,13]). We first deduce a null
controllability result for the linear system:

w,—Aw—l—VpO:fO—i—vILw, V.-w=0 1in Q,
—zl—Az+Vq=f1~|—w]1@, V.-z=0 inQ,
w=z=0 on X,
w() =0, z(T)=0 in £,

(1.5)

where £ and f! will be taken to decrease exponentially to zero at = 0.
The main tool to prove this controllability result for system (1.5), and the second main result of this paper, is a
suitable Carleman estimate for the solutions of its adjoint system, namely,

Vi — AV +Vik=g!, V.y=0, in Q, (16)
=0, ¥ =0, on ¥, ’
o(T)=0, ¥(0) =y°, in £2,

where g0 € L2(Q)V, ¢! € L?(0, T; V) and ¢° € H. In fact, this Carleman inequality is of the form

// p1(0)(l* + [y 1*) dx dt < c(// p20)(|2°) + &' P + |Ve' ) dx di
0 0

N
+ > // 53(t)|<p,-|2dxdz>, (1.7)

J=Li# 5% 0,1)

where o (1), k € {1, 2, 3}, are positive weight functions and C > 0 only depends on 2, w, O and T .
The idea to prove (1.7) is to combine some observability inequalities for both ¢ and ¥ and try to eliminate the
local term in . When proving a Carleman inequality for v, we will avoid having a local term of the kind

// Pax. )y P dx d.

ax(0,T)

The reason is that when we estimate this integral in terms of local terms in ¢ (using the equation of ¢ in (1.6)), a local
term of the pressure m appears.

To overcome this issue, the author in [11] (see also [12]) proves a Carleman inequality for » with a local term in
V x ¢. Even though this idea gets rid of the pressure term (again, using the equation satisfied by ¢), it makes appear
local terms in v; and some of its derivatives, which for our purposes is not good.
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This motivates finding a Carleman inequality for ¥ with local terms in A/, j # i. We base our strategy in the
method introduced in [5] and the ideas in [4]. We decompose v in the form ¥ + I/Vf in such a way that the pressure
term associated to the more regular function, say v/, is a harmonic function in Q. Then we apply the operator (VVA.)
to the equations satisfied by 1,0 j» ] #1, to have an equation in some derivatives of 1// ;j which depend neither on w, nor
on the pressure. Note that by doing this, we lose all boundary conditions. At this point we would have

Z //pﬁ(x DIAY; P dxde

J=Lj#i g

(//m(z)}g | dxdt + Z // 56(x,z)|m/7,-|2dxdt+b.t.),

J=Li# 50,1)

where “b.t.” stands for boundary terms which have to be estimated. This is done using regularity estimates for the
Stokes system. This will give additional integrals on v/;, g' and Vg':

Z //,Oﬁ(x DAY, P dxdt < (//57(t)(|g1|2+|vg1|2)dxdt

J=Lj#i g

N
vy ] 56<x,t>|A¢,»|2dxdr+//58<r>|¢,-|2dxdr). (18)
o

J=Li# 550,1)

Now, using the divergence-free condition and the properties of the weight functions one can incorporate in the
left-hand side of (1.8) a global term in v, which will be useful to absorb the last term in the right-hand side.
For ¢ we use a Carleman estimate proved in [4]:

//ﬁg(t)|<p|2dxdt (ff Pro®ly| dxdt+/fmo(r)lg°| dx dt
Q

Ox(0,T)
+ Z // 511<r>|¢j|2dxdr>.
J=LJ# )%0,T)

Provided that p19 < 06, we can absorb the first term in the right-hand side by the left-hand side of (1.8). At this
point we arrive to:

// 510 (1o + 1w1?) dxde < c(// 22 (|8°] + |g'|* + |Ve' [*) dxd
0

Ly [ mesvrasas [[ o) dxdt])

J=Li#55%0,1) wx(0,T)

Finally, we estimate the local terms in Av; in terms of local integrals of ¢; using that

AV =—(Ag)) — A(Ag) + ;A" — AgY in&x (0. 7).

provided that w C O.

The paper is organized as follows. In Section 2, we present the technical results needed to prove inequality (1.7).
In Section 3, we prove a new Carleman inequality for the solutions of (1.6). In Section 4, we deal with the null
controllability of the linear system (1.5). Finally, in Section 5 we prove Theorem 1.1.
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2. Technical results

In this section we present all the technical results we need to prove inequality (1.7). It is based on suitable global
Carleman estimates. In order to establish these inequalities, we are going to introduce some weight functions. Let wg
be a nonempty open subset of RY such that wy € w N O and 5 € C?(£2) such that

IVn| >0 in £2 \ wo, n>0 inf2, and n=0 onads2.
The existence of such a function 7 is given in [9]. Let also £ € C*°([0, T']) be a positive function in (0, T') satisfying

Li)y=t, Vtel0,T/4], Lt)y=T—t, Vtel3T/4,T],
L(t) <L(T/2), Vtel0,T].

Then, for all A > 1 and m > 10 we consider the following weight functions:

e lloe _ ghn(x) M)
a(x,t)zW, E(x’t):g([)m’
o (1) =maxe(x,1), (1) =mink(x, 1),
xes2 xesf
a(t) =mina(x,r), é(t):malgg(x,t). 2.1
xesn xXeR

The first result is a Carleman inequality for the Stokes system with the right-hand side in L?(Q)" proved in
[4, Proposition 2.1].

Lemma 2.1. There exists a constant rg > 0 such that forany A > Ao there exists C > 0 depending only on A, §2, w, n
and ¢ such that foranyi €{l,..., N}, any g € L2(Q)N and any u® € H, the solution of

uy—Au+Vp=g, V-u=0, inQ,

u=0, on X,

u(0) = u®, in§2,

satisfies

N
£ /e—8/3sa—4sa*é3|Auj|2dxdt+s4//6—20/3‘va*(g*)4|u|2dxdf
J=Li#i"g 0

N
< C(/f e—4sa*|g|2dxdt +S7 Z / 6—8/3_?&—450[*57'”./|2dxdt) (2.2)
Q

J=LI# 4)%(0.7)
foreverys > C.

Remark 2.2. In [4], the weight functions « and & are given for m = 8, but the proof also holds for any m > 8.
Additionally, the first term in the left-hand side of (2.2) does not appear explicitly in Proposition 2.1 of [4]. However,
it is easily seen from its proof that this term can be added.

The following result is a Carleman inequality for parabolic equations with nonhomogeneous boundary conditions
proved in [14, Theorem 2.1]:

Lemma 2.3. Let fo, f1,..., fn € L2(Q). There exists a constant ):1 > 0 such that for any X > ):1 there exists C > 0
depending only on A, $2, wo, n and £ such that for every u € L20,T; H{( Q)N HY 0, T; H-1(£2)) satisfying

N
w—Au=fo+» 0;f; inQ,

j=1
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we have

// e (s e Vul? + sg|ul?) dx dt
0

+ S71/2 ||€73/2SO‘* (%_*)71/4+l/mu ”iz(z)

< C(S // 6735'(){%-'”'2 d.x dt +S71/2 ||673/2S0[* (S*)*l/“»u ||i]1

Z'%(Z‘)
wox(0,T)

N
+s*2//e*35“.§*2|f0|2dxdt+Z// e3s°‘|fj|2dxdt),
0 ="

foreverys > C.

Recall that

2 2 1/2
”u”H%’%(Z’) (||u||Hl/4(O,T;L2(BQ)) + ”u”Lz(O,T;Hl/Z(a.Q)))

Remark 2.4. The usual notation for this space is actually H i (X)) (see, for instance, [18]). However, we follow the
notation used in [14].

The next technical result corresponds to Lemma 3 in [5].

Lemma 2.5. Let r € R. There exists C > 0 depending only on §2, wo, n and € such that, for every T > 0 and
every u € L2(0, T; Hl(.Q)),

S2 // ef3sot$r+2|u|2dxdt
0
< c(// eUE | Vy P dx dt + 52 /[ e—3mgr+2|u|2dxdr),
0

wox(0,T)

foreverys > C.

The next result concerns the regularity of the solutions to the Stokes system which can be found in [15]
(see also [20]):

Lemma 2.6. For every T > 0 and every f € L*(Q)V, there exists a unique solution
ueL*(0,T; H*(2)N)nH'(0,T; H)
to the Stokes system

uy—Au+Vp=f inQ,

V-u=0 in Q,
2.3
u=0 on X, @
u(0)y=0 in 2,
for some p € L>(0, T; H'(2)), and there exists a constant C > 0 depending only on §2 such that
113207 2c2omy + 10310 72120299y < CIF 1720+ (2.4)

The following regularity results can be found in [21] (see also [15]).
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Lemma 2.7. For every T > 0 and every
feLl*0,7;Vyu(L* (0, T; H'()N)nH' (0, T; V")),
the unique solution to the Stokes system (2.3) satisfies
ueL*(0,T; H*()N)nH'Y(0,T; V)

and there exists a constant C > 0 depending only on $2 such that (depending on where f is taken)

117207 132y + 1431 0. 72wy < CUF 132070 (2.5)
or
2 2 2 2
||u||L2(O,T;H3(Q)N) + ”u”Hl(O,T;V) < C(”f”LZ(O,T;Hl(Q)N) + ”ft ”LZ(O,T;V’))' (26)

Furthermore, let us assume that
fel(L*o.7; H3 M) nH'(0,T; V))
u (L0, s H* Ny n H' (0, T; H' (V) n H*(0, T; V)]
and it satisfies the following compatibility condition:
Vpr=f(0) onosf,
where py is any solution of the Neumann boundary-value problem

Ap;=V-f(0) ing,

8 .
opf =f0)-n ondf.
on

Then, u € L>(0, T; H3(2)M)NHY (0, T; H3(2)N) N H?(0, T; V) and there exists a constant C > 0 depending only
on $2 such that

2 2 2
||u||L2(0,T;H5(Q)N) + ||u||H1(O,T;H3(Q)N) + ||M ||H2(O,T;V)
2 2
g C(”f”LZ(()’T;HS(_Q)N) + ”ft”LZ(O,T;V))’ (27)

or

2 2 2
||u||L2(0,T;H5(Q)N) + ||u||H1(0,T;H3(Q)N) + ||u||H2(O,T;V)
2 2 2
< C(||f||L2(0,T;H3(Q)N) + ||ft||L2(0,T;H1(.Q)N) + ”f”HLZ(O,T;V'))' (28)

3. Carleman estimates

In this section we prove a new Carleman estimate for the Stokes coupled system:

—¢—Ap+Vr=g"+y1lp, V-9=0, inQ,

Vi — AV +Vik=g!, V.y=0, in 0, 3.0
=0, ¥=0, on X, ‘
o(T)=0, ¥(0)=y°, in 2,

where g0 € L2(Q)V, ¢! € L>(0, T; V) and y° € H. It is given by the following proposition:

Proposition 3.1. Assume that w N O # . Then, there exists a constant Ly, such that for any X > Ao there exists
a constant C > O depending only on , 2, @ and £ such that for any i € {1,...,N}, any g° € L2(Q)", any
g' € L*(0,T; V) and any y° € H, the solution (¢, V) of (3.1) satisfies



34 N. Carreio, M. Gueye / J. Math. Pures Appl. 101 (2014) 27-53

s4/f TS (g% ) lpl>dxdt + s /f —dsa” |1//| dx dt

Q

<C<s9//e3xasa*59|g0|2dxdt+/feW*(|g1|2+ |Vg]|2)dxdt

0 o
N

+s7 3 // e3mm*gl3|¢,|2dxdr>, (3.2)
J=LI# 4%0,1)
foreverys > C.

The proof of Proposition 3.1 is divided in three parts. In the first part, we prove a general Carleman inequality for
the Stokes system with local terms only in A(-);, j # i (see Proposition 3.2 below). In the second part, we deduce a
Carleman estimate for the equation of v in (3.1). In the third and final part, we combine it with the Carleman estimate
in Lemma 2.1 for ¢ and do the final estimates to obtain (3.2).

3.1. New Carleman estimate for Stokes systems with A(-)j (j #1) as local terms

Before proving the Carleman estimate for ¥, let us prove a more general inequality which has its own interest.
The new Carleman inequality for ¢ will be deduced from it.
We consider the Stokes system

¢ —Ap+Vh=f+g, V-¢=0, inQ,
=0, on X, (3.3)
$(0) =¢°, in £2,
where ¢° € H and
(f.9) e[(L*0,T; H3(2)N)nH' (0, T; V))
x (L*(0, T; H*()N)nH' (0, T; H' (2)Y) n H?(0,T; V'))]. (3.4)

We prove the following estimate for the solutions of system (3.3).

Proposition 3.2. Let @ C 2 be a nonempty open set such that wg € ®. Then, there exists a constant A2, such that
for any A > A, there exists a constant C (1) > 0 such that for any i € {1, ..., N}, any ¢° € H and any (f, g) satisfy-
ing (3.4), the solution of (3.3) satisfies

[f/ 350 (3| A2 + SOE3 VAP P + sE[VV A,

J=Lj#

+s7eT vV vag;?) dxdt} + 5 /f e—3m*(s*)5|¢|2dxdz
o
<C< 5/2// 3t ()32 (112 4 g 2 )dth+// e 3 VV(V - )| dxdt
T
4512 f |73 (&)™ (1. 9)), [ goyon dit +512 f O G I (31 e
0 0
T

+ / H ((53/46—3/2501* (g*)1—3/(2m)g)t’ (s—l/4€—3/2sa* (E*)_S/(Zm)g)n) ”%// dt
0
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N
+ Z [// HEVAS +g)) | dxdi +s° // eT3UE3| A dxdtD (3.5)

J=Li# =g &x(0,T)

foreverys > C.
Remark 3.3. For our purpose, we will take g = 0. See the proof of Proposition 3.5 below for more details.

Remark 3.4. For the sake of simplicity, from now on we consider the case N =2 and i = 2 for the proofs of
Proposition 3.1, Proposition 3.2 and Proposition 3.5. The arguments are easily adapted to the general case.

Proof of Proposition 3.2. First, following the method introduced in [5], we apply the divergence operator to Eq. (3.3)
to obtain

Ah=V-g inQ.
Then, applying the operator (VV A-) to the equation satisfied by ¢; we have

(VVAP): — A(VVAP) =VVA(f1+81) —01VV(V-g).

Notice that the right-hand side of this equation belongs to L>(0, T; H~!(£2)*), thus we can apply Lemma 2.3 to this
equation to obtain

s—1// e—3S“g—1|VVVA¢1|2dxdz+s//e—3m§|VVA¢1|2dxdt
0 0

<C (s—l/z ”6—3/2sa* (5*)_1/4+1/mVVA¢1 ”iz@yt

+s71/2 ||e_3/2m* (E*)_1/4VVA¢1 || f/ e_3m|VA(f1 +g1)|2dxdt

PER (2)*

// 3N YV(V- )| dxdt +5 // e IUEIVV AP dxdt) (3.6)

wox(0,T)
for every s > C.
We divide the rest of the proof in several steps:
e In step 1, we add some global terms in the left-hand side of (3.6), but by doing so we add some local terms in the
right-hand side. These terms will be estimated in step 3.
e In step 2, we estimate the boundary terms which appear in the right-hand side of (3.6).
e In step 3, we estimate the undesirable local terms.

In the following, C denotes a constant depending only on A, £2, w, O and £.

Step 1. We apply Lemma 2.5 with » = 1 and u := VA¢; to obtain

s3// eIV AP P dx dt
(// “He| YV AP [P dx dt + 53 /[ e E VA dxdt) 3.7)

wox(0,T)

for every s > C, and another time with r = 3 and u := A¢;. We have
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5 f/ eTIUEN Ay | dx dt
( / / TV AG P dxdl + 5 / / e IUE A dxdr) (3-8)

wox(0,T)
for every s > C.
At this point, combining (3.6), (3.7) and (3.8), we get

/f eI (sTIETH VYV AR + 5EIVV AP 1> + 5783 VAP [*) dx dt

+ 5 // e3UE Ay |Fdx dt
0

+//e’3s°‘|VA(f1 +g1)|2dxdt+//e*3sa|vvv-g|2dxdt
0 0

1
22)

// e (sE|VVAG 2 + 583 VA + 57| A ) dx dt>, (3.9
wox(0,T)

for every s > C.
Estimate of ¢>. Now we would like to introduce in the left-hand side a term in ¢ = (¢1, ¢). From the divergence-

free condition, we get
// e |82¢>z| dxdt =s° // —3sa |al¢1| dx dt

/ f —3sa” |v¢1 |>dxdt.

Since ¢;]50 = 0 and £2 is bounded, we have

/|¢2|2dXSC(~Q)/|82¢2|2dx.

Finally, notice that &* and &* do not depend on the space variable x, so that

f/ =3¢ (£ gy 2 dx df < C(2)s f/ =3¢ (£ 9y | dx dt,

s // e 3 (&%) o2 dx di < Cs° // e 3 (%) |V P dx di.
0 )

and therefore

Now, since [|A - || 12(g) is an equivalent norm to || - | j2() in the space of functions with null trace, and using the
definition of @* and &* (see (2.1)), we obtain from this last inequality

s5// e—3m*(s*)5|¢2|2dxdt <Cs5// e 3UE Ay |*dx dt. (3.10)
0 0
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Combining (3.9) and (3.10) we have for the moment

Li(s, p) == // e (sTIET VYV AR + 5E|IVV AP ) dx dt
0

+ // e—3SOt(s3§3|VA¢] |2 +S5§5|A¢] |2) dx dt +S5 // e_3m*(§*)5|¢|2dxdt
0 0
< C(s_1/2 o305 (67 MGG gy 2 s

2
1
H¥2(x)4

+// eIV A(S +g1)|2dxdt+// e 3YVVY - g|>dx dt
0 0

+S—l/2 ||e—3/2sa* (g*)_1/4va¢1 H

+ / / eIU(EIVV AP + SE VAP ? + 5565 Ay ) dx dr), (3.11)
wox(0,T)

forevery s > C.

Step 2. In this step we deal with the boundary terms in (3.11). We begin with the first one. Notice that the minimum
of the weight functions e~3/2°* and & is reached at the boundary 352, where @ = * and & = £* do not depend on x.
Since m > 10, (E*)’1/4+1/’" is bounded in (0, T'), thus we obtain

12 ||e—3/2sa* (S*)_l/4+l/mVVA¢1 ”22

2
L2(2)4

(2)*

< CS71/2 ||ef3/25a*VVA¢1 ”
< Cs—l/z(”e—a/zxa*vvmm ”i2(Q)4
+ 1272 (1) VY AGL 12 g 57T (5 TPV AL 12 )

<Cs™1/? // eI (sEIVV AP F +5T T IVVVAQ ) dx dt. (3.12)
0

Therefore, this boundary term can be absorbed by the left-hand side of (3.11) for s > C.
We turn to the second boundary term:

_ _ % en—1/4 2
s 1/2”6 3/2sa (E*) /VVA¢] ”H%’%(z)“'

To this end, let us define
(@1, hy) = 5326325 ()27 (4 py =21 (1)(, ).
Then, from (3.3), (@1, h1) is the solution of the Stokes system:

o — AP VR =0 (f+e)+L9, V-@'=0, inQ,
ol =0, on X,
@'(0)=0, in £2.

Using the regularity estimate (2.4) for this system, we have

2 2 2
||¢1 HLZ((),T;HZ(Q)Z)mHl(O,T;LZ(Q)Z) < C(Hfl(f +8) ||L2(Q)2 + ” é—1/‘75||L2(Q)2)'
From (2.1), we see that

|§1/| < Cs3/20~3/250" (3;*)5/2,
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for every s > C. Thus, we obtain

2
H ?! ”LZ(O,T;HZ(Q)Z)mﬂl(0,T;L2(Q)2)

< C(||§1(f ) “iz(@z + ||S5/2e—3/25a* (5*)5/2

2
¢ ||L2(Q)2)'

Now, notice that, from an interpolation argument between the spaces L>(Q)? and L?(0, T; H>(£2)?), we obtain

||S26—3/2sa* (g*)Z—l/(Zm)qb ”iz(O,T;V)

< H(pl ||L2(0,T;H2(9)2) ”55/26_3/2m* (5*)5/2¢||L2(Q)2
<C([6(f + 9 20p + 157272 (60 12 0)- (3.13)
Next, we introduce:
(@2, ha) 1= 5e™ /29 (%) T (g n) = 65(1) (g ). (3.14)
Then, (®2, h») is the solution of the Stokes system:
O — AP+ Vhy=0(f+9) +4yp, V-@2=0, inQ

®2=0, on X,
®2(0) =0, in 2.

Using the regularity results (2.5) and (2.6), we find:

@2 2
“ ”L2(0,T;H3(9)2)0H1<0,T;V)
<C(lgfI? + 28117 +”§/¢H2 )
X 2J lr20,1;v) 2811 1200,7: H (£2)2)NH (0,T: V") 2910 L20,1;v) /)
Using the estimate

|§2/| < Cs2e=3/25e” (%_*)2—1/(2’7!)’

for every s > C, and (3.13) we get

”452“iz(O,T;H3(Q)2)ﬁH1(O,T;V)
<C([61(f + 03200 + 1020 1220 1oy + 10281220 111y 0.7
+ |}s5/2e*3/230‘* (é*)s/zqﬁ”iz(@z). (3.15)
Finally, let

(@3, h3) i= e Y2 (£5) 7 ¢ 1y = ;309 ).
Then, (@3, h3) is the solution of the Stokes system:

D — AP+ Vh3=04(f +8)+ ¢, V-@3=0, inQ,
@3 =0, on X,
@3(0) =0, in 2.

Using the regularity results (2.7) and (2.8) (note that the compatibility condition is trivially satisfied) and estimates
for the weight functions, we have

@3
” HLZ((),T;HS(Q)Z)nHl(0,T;H3(:2)2)0H2(0,T;V)

2 2
S C(”§3f”L2(0,T;H3(9)2)0H1(0,T;H1(Q)Z) H1838120,7; 13 @2nm 0.7 51 @) H2 0.7 V1)

2 3250t (e 2—1/2m) (12
+ ”(pz”LZ(O,T;H3(.Q)2)OH1(0,T;V)+ ”326 3z (5*) /e ¢||L2(0,T;V))’
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and combining this with (3.15) and (3.13), we get

”(p ||2LZ(0,T;H5(:2)2)0H'(0,T;H3(:2)2)0H2(0,T;V)
C(l1(f + 9 F2ipp + 122, oy 1)
+ ”Qg”iz(O,T;Hl(Q)z)ﬂH](O,T;V’) + ||§3f”2Lz(O,T;H3(.Q)2)ﬁH](O,T;HI(Q)Z)
+ ||§3g”iz(0,T;H3(Q)2)ﬂH] O,T;H' (2))NH2(0,T; V")
+ ||s5/2e‘3/25“* (S*)S/ztb ”iZ(Q)Z)' (3.16)

For m > 10, we have in particular that

e (€T Ag € L20,T; H' (2)) N H'(0, T; H'(2)*)

and, using a trace inequality (see, for instance, [18]) we deduce

||e_3/2mt* (S*)‘1/4VVA¢’1 HH4 (D)

3250 {55\ —5/(2m) 2
C ([l (g7) 7> YV A 20 1,11 @y 0,7 -1 2))-

From (3.16), we find

_ _ " —1/4

_ _ * —5/(2m)
<Cs ]/2(”6 32 (5*) e ¢’”L2(0 T:H5(£2)2)NH (0, T'H3(Q)2))

_ 51— 5/2
g CS 1/2(5 ||€ 3/2501 ( ) / ¢||L2(Q)2 + Hgl(f +g) “LZ(Q)Z + ||€2f||L2(0 T:V)
2
+ ”ng||L2(O,T;H1(Q)2)F]H1(O,T;V’) + ||§3f||L2(O,T;H3(.Q)2)0H1(O,T;Hl(.Q)z)

2
+ ||§3g”L2(O,T;H3(.Q)2)ﬂH1(O,T;Hl(Q)z)ﬂHz(O,T;V’))'

This inequality, combined with (3.11) and (3.12) gives

Il(s,¢)<C< // e I (sEIVV AP + 5763 | VAP *) dx dt

wox(0,T)

// eTIUEN A | dxdt+// *3”|VA(f1+g1)| dx dt

wox(0,T)

+ // eIV - gPdxdr+ s (f + 9|20

1/4

_ 2 _ 2
+ |57 0 (f.9) ||L2(0,T;H1(.Q)4) + s 1/4§2g||H1(0,T;V’)

_ 2 _ 2
+|s e(f.g) “L2(0,T;H3(Q)4)OH'(0,T;H1(9)4)+ s 1/4§3g”H2(0,T;V/))’ (.17

for every s > C.

Step 3. The last part of the proof consists of estimating the local terms in the right-hand side of (3.17) by local
terms of A¢; and I; (s, ¢) multiplied by small constants.

Let us begin with the first term in the right-hand side of (3.17). Let w; be a nonempty open set such that
wy Ew) €®and 9 € Cg(a)l) be a nonnegative function with 6y = 1 in wy.
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Integration by parts gives

s // e BYEIVV AP P dxdt <s // 01 E|VV AP > dx dt

wox(0,T) w1 %(0,T)

=—s / / 01e " FYEV AP VAP dx dt

w1 x(0,7)

+ % // A(01e7€)|V APy |* dx dt.
w1 x(0,T)
Using the estimate

|A(916—3SC{€)| g Cvsze—3.5‘05537
for every s > C, and Young’s inequality, we get

s // e BYEIVV AP P dx dt

wox(0,T)

<es™! // e’3”§’1|VA2¢1|2dx dt + C(e)s’ // e 3UENV AP > dx dt, (3.18)
o1x(0.T) w1%(0,T)
for every s > C and any ¢ > 0.

In an analogous way, we estimate the local term in VA¢;. Indeed, let 6, € Cg(c?)) be a nonnegative function with
6> =1 in w;. Integration by parts gives

$3 // e UENVAY P dxdr < 57 f/ Ore 3UE3 VAP > dx dt

w1 x(0,T) wx(0,T)

=g / / 0re B3NP Ay dix dt

ox(0,T)

3
+% /[ A(bre=3E%) | Agy P dx dt.

@x(0,T)
Using the estimate

‘A(62e—3sa$3)| < CSZe—?asaé&S’

for every s > C, and Young’s inequality, we get

53 /f e 3UENV AP P dx di

w1 x(0,T)
<es // e_3m$|A2¢1|2dxdt+C(s)s5 f/ e 3UE Ay |Fdx dt, (3.19)
wx(0,T) @x(0,T)

for every s > C and any ¢ > 0.
Notice that
VA2 [* <2IVVVAg P
and
A% [* <2/VV A 2.

Using this in (3.18) and (3.19), and then combined with (3.17) and an interpolation argument between the spaces
L2(Q) and L2%(0, T; H3(£2)), gives (3.5) for ¢ small enough. This ends the proof of Proposition 3.2. O



N. Carreito, M. Gueye / J. Math. Pures Appl. 101 (2014) 27-53 41

3.2. New Carleman estimate for

Now, we deal with the Stokes system:
Vi — Ay +Vik=g', V.y=0, inQ,
Y =0, on X,
V(0 =y, in 2.
Let us start by introducing (y*, *) and (1;, ¥) the solutions of the following systems:
Yl =AY+ Vi =pig', V-y*=0, inQ,
1//,* — O, on 27 (320)
¥*(0) =0, in 2,
and
Vi =AY +VR=piy, V-¥=0, inQ,
¥ =0, on X, (3.21)
¥(0) =0, in 2,

where p1(t) := e~ 1/259" Tt is not hard to see that W* 4+ 1; k* +K) solves the same system as (o1, p1x). Thus, by

uniqueness of the Cauchy problem we have
oy =v*+ ¥ and pik =k*+K. (3.22)
Notice that, from Lemma 2.6 applied to system (3.20), we have
y* e L2(0,T; H*()N)nH' (0, T; H)
and
“w*niz(O,T;HZ(Q)N) + ||‘ﬁ*||§{1(o,T;L2(:2)N) < C”plgl ”iZ(Q)N' (3.23)

Furthermore, from Lemma 2.7 (see (2.5)), since g' € L%(0,T;V), we have v* € L2(0,T; H3(2)V) n
H'(0,T;V) and

2 2 2
||W*||L2(0,T;H3(.Q)N) + |W*||H1(0,T;H1(Q)N) < C“/’lgl HLZ(O,T;V)' (3.24)

We prove the following estimate for the solutions of system (3.21):

Proposition 3.5. Let @ C $2 be a nonempty open set such that wy € @. Then, there exists a constant A3, such that for
any A > A3 there exists a constant C (1) > 0 such that foranyi € {1, ..., N}, any g' € L*(0, T; V) and any ¥° € H,
the solution of (3.21) satisfies

[// IS AP P+ 533 VA 1P+ sEIVVAY; P
J=1j#

+s7leTlivvvay;?) dxdt] // —3sa |1/,| dx dt

(// o (P Vg P ardr 45 [[ esiag, dxdt) 525,

j=1
ot &x(0,T)

foreverys > C.
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Proof. As mentioned in Remark 3.4, we consider N =2 and i = 2. We apply Proposition 3.2 to system (3.21) with
f=p¥, g=0and &= . This gives (see (3.11) for the definition of I (s, /)):

I (s, w><c< 5/2// =3 (g oy P dx d

4712 —3sa* (g*)—S/m

e Hpiwniﬁ(mz dt

+s_1/2

S — Ny °—— ©

H (6—3/2505* (%. ) 5/(2m) /Iﬁ) HHI(Q)Z dt

// VA (pjyn) P dx i + 57 // TIE A | dxdf) (3.26)

&x(0,T)

for every s > C.

Now, we estimate the global terms in the right-hand side of (3.26) by the L?(0,T; V)-norm of g! and &1 (s, I;),
& > 0 to be chosen small enough.

Note that from (2.1), we have

1+1
i <Cs(67) "o
for every s > C. Thus, from (3.22), the fact that §9/4e=3/ 250 (&'*)5/2 is bounded and (3.23), we obtain

||S5/4e—3/2sa*(s )3/2 1/m /W”LZ(Q)z

< C(||59/4e_3/2w* (5 )5/2w||L2(Q)2 + ||p1g ”LZ(Q)Z)
gSI](S, 1;)+CH,0181HL2(Q)2, (327)

for every s > C?/g?.
In order to estimate the second and third terms in the right-hand side of (3.26), we define

— * 1-3/(2
{(t) = S3/4€ 3/2sa (%-*) /( m),ol

and take a look to the system satisfied by (£v). Since the right-hand side of this equation belongs to L>(0, T'; V), we
apply the estimate (2.5) in Lemma 2.7 and we get

2 112 2
”E‘/’”L2(0,T;H3(.(2)2)ﬁH1(O,T;HI(Q)z S C(”{g ” L2(0,T;V) + Hg“/llf” LZ(O,T;V))' (3.28)
From the estimate || < Cs’/4e3/ 2™ (£%)2=1/@m) 5, and the interpolation inequality
2/3 1/3
10l < CIIES o) IVl i gy Yo € HA(82),
we have that
2 5/2 —3/2sa* 5/2 2 -1 2
16 207wy S els™2e 2 (E) 010 [ 20y + 57 CelEW T2 0. 7132
Combining this with (3.28) and, using (3.22) and (3.24), we have that
~ 2
||§¢||L2(0T H3(Q)2 + ||§¢||H1(0T HI(Q)Z) 811(5, 1p)—|—(j“/Olgl||LZ(()J‘;‘/)9 (329)

for every s > C.
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For the second last term in the right-hand side of (3.26), we use again (3.22), (3.24) and the fact that £ > C > 0
in Q, to obtain

/ / e F\VA(pfyn) [P dxdr el s, 9) + [ 018" 720720 (3.30)

for every s > C/e.
Putting together (3.27), (3.29) and (3.30) in (3.26), and choosing ¢ > 0 small enough, we obtain (3.25) and conclude
the proof of Proposition 3.5. O

3.3. Carleman for ¢ and final estimate

To finish the proof of Proposition 3.1, we turn now to the equation satisfied by ¢:

—pr—Ap+Vr=g"+y1p, V-9=0, inQ,
¢ =0, on X,
o(T)=0, in £2.

Assuming that v is given, we apply estimate (2.2) in Lemma 2.1 to ¢:

IO(S,(P) = S3 /-/ 678/3Sa74sa*$3|A€01|2dx dl +S4 // 8720/3@0[* (é:*)4|§0|2 d.x dt

< // —45eT | dxdt+/f —dset |g°| dx dt

Ox(0,T)
// 678/3;&‘&74&0{*57'('01'2 dx dt), (331)
wx(0,T)

for every s > C. Recall that N =2 and i =2.
Notice that from (3.22) we have

// e M1y 2 dx dt = // e*45“*|p1|*2|w*+$|2dxdt.
Ox(0,T) Ox(0,T)

Since e~ #" | p; |72 = 735" using estimate (3.23) and 57 (§*)° > C, we have

/[ e [y R dxdr < ( // 3 ()5 ) dxdt+f 012" dxdf)

Ox(0,T)

for every s > C. Combining this with (3.31) and (3.25) from Proposition 3.5, we obtain

Li(s, %) + Io(s, ) < (/f et G012 dxdt+f lo12(g* + | Ve![*) dxdr

58 [[ evedniiparass [[ ey dxdr) (3.32)

@x(0,T) wx(0,T)

foreverys >Candw €wNO. N
To conclude the proof of Proposition 3.1, we estimate the local term in Ay in terms of local integrals of ¢1, global
terms in g° and g, and (I (s, ¥) + Io(s, ¢)) with & a small positive constant.
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We start by looking at the equation satisfied by ¢ in O x (0, T'), by applying the Laplacian and multiplying by py,
we find

P1AYT = —p1(Ap1); — p1AAQ) + p191V - g% — p1AgY in O x (0, T),

where we have used that Awr =V - g0 in O x (0, T). By (3.22), we have

PIAY = AYT + AV,
and therefore
AV = =AY — p1(A@); — p1AA) — p1AgY +p131V -g° in O x (0, T). (3.33)

Now, let 6 € Cg (w N O) be a nonnegative function with =1 in @ (recall that @ € w N O). Using (3.33) in the
third term in the right-hand side of (3.32), since @ C O, integration by parts leads to

// e B\ AY P dx dt

&x(0,T)

< / / 0e B UE AP (=AY = p1(Ag)) — p1A%p1 — piAg) + 11V - ¢%) dx di

wx(0,7)
// O 3 AP Ay dx dt + 5 // 0(e €% p1), AV Agy dx dt
wx(0.T) wx(0,T)
// IS oy A Ay dx dt — 250 f/ p1V(0e™9E%) - VAY  Apr dx dt
wx(0,T) wx(0,T)
// Op1eE% p| Ay A dx dt — 57 // 0p1e N2 g0 dx di
wx(0,T) wx(0,T)
// 3”“’;‘ plAwlgl dxdt —2s° // V(0 3m‘f;“) VAl//lgl dxdt
wx(0,T) wx(0,T)
+ 8 // p1(0e™ &) VAY: - g0 dxdt + 57 // p191V (0e™E%) - Ay g% dx dt
wx(0.7) 0x(0,7)
f/ p1V(0e™3*E3)d Ay - g% dxdt + 57 // p191 (033 VAY - g% dxdr
wx(0,T) wx(0,T)
12
= U, (3.34)
k=1

for every s > C, where we have used the equation satisfied by Alzl to obtain Js.
To estimate Ji, we use Young’s inequality and (3.23). We obtain

Ji <es® //e—3m§5|m/71|2dxdz+c/ |,01|2’g1|2dxdt, (3.35)
0 0

for every s > C and any ¢ > 0.
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For J,, we perform another integration by parts

h=s // 0(e 3 E%p1), A1y dx dt

wx(0,T)
+2s° // V(G(e_%“fspl)t) ~VA$1¢1 dx dt
wx(0,T)
// A(Q(e_&méspl)t)A%(pldxdt.
wx(0,T)

Using Young’s inequality and the estimates
}0(8_3“155/01)1‘ < Cse_3m§6+l/mp1,
iv[9(6—3sa$5pl)[]| < CS26_SSQE7+1/m,01,
and
|A[9(e—3sa$ o1 ) ]| <Cs3 —3sa§-8+l/mp1’

for every s > C, we have

nga// “I(SES AT+ SE VAT + sE| A7) dx di

+ Csll // e—3S0té_-11+2/mlp1|2|(p1|2 d.x dt, (336)
wx(0,T)

for every s > C and any ¢ > 0.
For J3, we integrate by parts twice in space:
Jy=—s> // A(@e_%“és)plAlel(pl dx dt
0x(0,T)

// ,01VA(96_3‘WES) . VAIZ](pl dxdt

wx(0,7)

// A2(96_3m$5)p1A{51<p1dxdt.
wx(0,T)
Using Young’s inequality and the estimates
|a(peo%)] < €
|VA(Oe™8%)| < CsPe 8, (3.37)
and
|A2(96—3S(¥$5)| g Cs4e—3solé9’

for every s > C, we have

J3 ga/f eI SEN AT + SEIVATI + 58| a2 [P) dx dr

ror // e B o1 Pl P dx d, (3:38)
wx(0,T)

for every s > C and any ¢ > 0.
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We integrate by parts again in Jy:

Jy = —25° f/ p1V(0e39E%) - VA2 1y dx di

wx(0,T)

— 45’ // pIVV(Qe%SO‘SS) :VV AU dx dt
©x(0,T)

—2s° // pIVA(Qe_3mES) . VA{/;](/J] dxdt.
wx(0,T)

Young’s inequality and estimates

|V(0e™3€%)| < Cse™ &S, (3.39)
[VV(0e7E%)| < CsPe g, (3.40)

for every s > C, and (3.37) yield

J4S8//6_3““(s_1§_1}VA2$1‘2+s§|VVAJ1|2+s3$3|VA%|2)dxdt
0

+csh // 3B oy Py P dix d, (3.41)

wx(0,T)

for every s > C and any ¢ > 0.
Using (3.22) and integration by parts in J5 gives

Js=s> // 0e3E pl (AP + AY) Ay dx dt

wx(0,T)
_ / / De3ES ) Ay Agy dxdi +5° / f 0p|e= 35 A2y dix it
wx(0,T) wx(0,T)
+25° f/ PV (0e™39E%) - VAY @1 dx dt
wx(0,T)
+s° // P A(0eE%) Ay g dx dt.
wx(0,T)

Using Young’s inequality and estimates (3.23), (3.39) and (3.40), we obtain

Js gsf/e—3”(s555|AJ1|2+s3g3|vm/71|2+ss|A2J1|2)dxdt
0

+ 8S3 / e—8/3sa—4sa*é3|A(p1|2 dx dt
wx(0,T)
_ 2 2
+C<s9 // e % pi | |¢1|2dxdt+//|p1|2\g1] dxdt), (3.42)
wx(0,T) 0

for every s > C and any ¢ > 0.



N. Carreito, M. Gueye / J. Math. Pures Appl. 101 (2014) 27-53 47

Finally, the rest of the terms in (3.34) are estimated using Young’s inequality and the estimates (3.39) and (3.40).
Namely, we obtain

J7+ Jip < es® // e 3 AY P dx dt + Cs® f/ e_3m§9|p1|2|g0|2dxdt, (3.43)
0 0
Jg+ Ji1 + Jip < es’ // e 3V AYL P dxdt + Cs® // e*3mg9|p1|2|g0|2dxdt, (3.44)
0 0
and
Jo+ Jo <es /fe*mgWVA%Rdxdz+CS9// e*3s“59|p1|2|g°|2dxdr. (3.45)
0 0

Combining (3.35), (3.36), (3.38) and (3.41)—(3.45) in (3.34), and then in (3.32), together with the fact that

Sll€_3safll+2/m|p] |2 + S9e—3sa%.9|pi|2 + S7€_8/3S&_4Sa*§'7 < CS13€—3501%.13|10] |2’

for every s > C, and e Tse” <e 20/ 3”*, we deduce (3.2). This concludes the proof of Proposition 3.1.
4. Null controllability of the linear system

In this section we deal with the null controllability of system:

Lw+Vp'=f"+v1, V-w=0 inQ,
L74Vg=fl+wlp, V-z=0 inQ,

4.1)
w=z=0 on X,
w()=0, z(T)=0 in £2.
Here, we will assume that fp and f] are in appropriate weighted functional spaces,
Lw:=w, — Aw,
and
L7:=—z — Az,
which is the adjoint operator of £. We look for a control v with v; = 0, for some given i € {1, ..., N}, such that the

associated solution of (4.1) satisfies z(0) = 0.
To do this, let us first state a Carleman inequality with weight functions not vanishing in t = 7. We introduce the
following weight functions:

2 nlloe _ prn(x) M)
x, ) =—=, (x,1)=—=—,
p Lam 4 104
B*(t) = maxa(x,1), y*(t) =miny(x, 1),
xen xeN
B(t) = min B(x, 1), p(t) =max y(x,1),
xe xes
where
- L), 0<r<T/2,
i) = ) /
oo, T/2<t<T.
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Lemma 4.1. Let i € {1,..., N} and let s and X\ be like in Proposition 3.1. Then, there exists a constant C > 0
(depending on s and \) such that every solution (¢, V) of (3.1) satisfies

/f “TEY( |¢| dxdt+// —HEY( |1//| dxdt
(// ot (59| O +[/ 58 (g2 + Vg ) dx dr

+ Z ff 35BS ()13 2 dxdt). (4.2)

J=LI# 4% 0,1)

To prove estimate (4.2) it suffices to combine (3.2) and classical energy estimates for the Stokes system satisfied
by ¢ and . For simplicity, we omit the proof. For more details on how to obtain (4.2), please see [3], [4] or [12].

Now we are ready to prove the null controllability of system (4.1). The idea is to look for a solution in an appropriate
weighted functional space. To this end, we introduce the space:

Ei={(w, »°. 2.4, v): e3/2‘”§+1/25’3*)9_9/2w e L>(Q)VN,
V2P e L2(0, T H (2)N),
63/2s3+1/2s,3*39—13/2v1w e L2(O)N, v =0, 2(T) =0,
8w e L2(0, T; H2(2)N) N L™®(0, T; V),

V2B () M e [2(0, 75 HA(@)Y) N L, T3 V),
1 () (Lw + Vp© —vi,) € LAQ)V,
e>F (y*)_s/z(ﬁ*z + Vg —wlp) € LZ(Q)N}.
It is clear that E; is a Banach space with the norm:

[(w. p% 2. q.0) |, 2= (/2P 120700

4 ” o1/25B*

2
w||L2(Q)N
+ ” e3/2s/§+l/2s/3* ];—13/21)10) ”iz

z |L2(0,T;H*1(.Q)N) QN
+ “67/4sﬂ* + ||e7/45ﬂ*w”L°°(0,T;V)

1/2sp* (y*)foZ/m

w20, 12020
+ ”61/25’6*( *)7272/mZHL2(() T H2(2)N) + ||€
+ [ e772F ()" (ij +Vp® —vi,) ”iZ(Q)N

+ He%ﬁ* (V*)_s/Z(ﬁ*Z + Vg —wlp) ”iZ(Q)N)l/z-

z ”LOO(O,T; V)

Remark 4.2. In particular, an element (w, pO, z,q,v) of E; satisfies w(0) =0, z(0) =0 and v; = 0. Moreover, we
have that

T () P w - Vyw e LAY,
() (2 V) w e LAQ)V,
P (y*)is/z(w -V)ze L2 (Q)N.
Proposition 4.3. Assume the hypothesis of Lemma 4.1 and

7/2?/3*( ) f e L2(Q)N  and eZvﬁ( )5/2f e L2 (). (4.3)

Then, we can find a control v such that the associated solution (w, p ,2,q) to (4.1) satisfies (w, pO, z,q,v) € E;. In
particular, v; =0 and z(0) =0
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Proof. Following the arguments in [9] and [13], we introduce the space
Po={(x.0.1t,v) € CY(Q*N T V. x=V-u=0inQ, Av=0in Q,
Xz =ulx =0, x(T)=p0)=0, Lu+ Vv|s =0}
and consider the operators
a((x,6, @, D), (x,0, 1, v))
= /f e—hﬁﬂﬁ*;ﬁ(ﬁ*x +V6é — 1) (L*x + Vo — ple)dxdt

/f (£M+W) (L +Vv) + V(LA + VD) : V(L + Vv)|dxdt
N
+ Z (3_3S'3_S5*7>13)2j X dx dt,

J=Lj# ,%0,1)

and

<G (x, o, M,U) f/f dedt+/ ' pdxdr.

Thanks to (4.2), we have that a(-,-) : Pp x Py — R is a symmetric, definite positive bilinear form on Py.
We denote by P the completion of Py for the norm induced by a(-, -). Then, a(-, -) is well-defined, continuous and
definite positive on P. Furthermore, in view of the Carleman estimate (4.2) and the assumptions (4.3), the linear form
(x,o0, u,v)~ (G, (x,0, 1, v)) is well-defined and continuous on P. Hence, from Lax—Milgram’s lemma, we deduce

that the variational problem:
{ Find (x, 5, i,b) € P such that @4)
a((X.6,,9), (x.0,1,v)) = (G, (x,0, 1)) V(x.0,p,v)€P, '

possesses exactly one solution (¥, &, i, D).
Let w, Z and v be given by

b= e P ()0 (L¥ 7 + V6 — 1) in 0,
=P (LA + VD — A(LR+ VD)) in Q, (4.5)
0j=—e ¥ )330,, j#£i =0 inQ.
Note that
T T
fesﬁ* 1211 @y dt:/esﬁ* P <2,;>§1_](Q)Nxﬂ(}(mdt
J 2yl ="

g . . . Y
e sup (/.ch—i—Vv—A(/.Zu—i—Vu),{)H_I(Q)NxHOI(Q)dt
=1

I
O"\ﬂ =)

[[q/ps
HY (@)

N
QQQ Ct~—
|

_gB* N N N N 2
e sup ((E,u+Vv,§)L2(_Q)N+(V(£/L+VU),V§)L2(Q)N) dt

1ty ="1

BLa+ VO +|V(LA+ VD)) dxdr.
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Furthermore, the equality can be achieved, and thus, it is readily seen that we have

r N
[[ et @y totavas [zl guar+ Y [[ B Gy B axa
0 0 J=LI# ok ,1)
=a((x,6,0.9),(X,6,,D)) < +oo.
Now, let us introduce the weak solution (w0, Z, p, q) of the Stokes system (4.1) with v = 9. It is readily seen that
this is also the (unique) solution defined by transposition, i.e., it satisfies

//m~g0dxdt+//'f-gldxdt
0 0
Z//(f°+ﬁ)-<pdxdt+//f1-¢dxdt, v(s®, ¢') e L*(0)*", (4.6)
0 0

where (¢, V) is, together with some (7, ), the solution of

L'¢o+Vr=g"+ylp, V-9g=0 inQ

Ly+Vi=g!, V.y=0 in Q, (4.7)
o=19=0 on Y,
o(T)=0, Y(@0)=0 in $2.

Notice that, since L2(2) = H @ H+ (H+ = {Vp: p € H'(£2)}, see for instance [20]) and V - Z = 0, we have an
equivalent formulation for all g% ghH e L2 Q)N x L*(0, T; H) in (4.6).

The next task is to check that (w, Z) coincides with the weak solution of the Stokes system (4.1). For this, we are
going to prove that (w, Z) satisfies (4.6). It is not difficult to prove that, from (4.4), (4.5) and performing an integration
by parts in space, (W, Z) satisfies

//u?o(.C*X+Vcr—y,]l@)dxdt—i-//ﬁ~(£,u+Vv)dxdt
0 0
=//(f0+ﬁ)~xdxdt+//fl~;dedt, Y(x, o, m,v) € Po. (4.8)
0 0

By a density argument, we will show that this is equivalent to (4.6) for all (g°, g!) € L>(Q)N x L?(0, T; H).
Indeed, for such a pair (g°, g!), there exists a sequence

(g2 &) € CE QN x C°((0.7); V)

converging to (g% ¢h in L2(Q)*N, where V = {y € C(‘)X’(.Q)N: V.-y=0in £2}.
Now, let (xx, ok, 1k, Vi) be the solution to

L+ Vor =80+ mbk, V-xx=0 inQ,

Lig+Vve=gi, V=0 in Q,
Xk =k =0 on X,
x(T)=0, ur0)=0 in 2,

where 0, € C®(£2) satisfies 6y — 1o in L2(§2) as k — oo. Then, it is not difficult to see that (xx, o, tk, Vi) € Po.
Thanks to regularity estimates for the Stokes system (Lemma 2.6), we obtain that (x, px) converges to (¢, V)
(solution of (4.7)) in L2(0, T; H2(£2)>NYN H' (0, T; L%(£2)?N). Then, we observe that

//Mk‘(]lo—Gk)dxdt—>0 as k — oo,
0
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and we can pass to the limit in (4.8) for (xk, ok, ik, vk) and establish that (w, Z) is also a solution of (4.6) for
any (g% g") € L2(Q)N x L?(0,T; H). Then (0, 2) = (i, ?) is, together with some (p°, §), the weak solution of
system (4.1) for v = 0.

It only remains to check that

4P e L2(0,T; H2(2)V) N L®(0, T; V)
and
/2P (¥ M e L2(0, T; HA(2)N) N L™(0, T; V).
To this purpose, let us define the functions

* A * A
w, 1= e/, PO = T4E" 50,

Iy 1= el/Zsﬁ* (J/*)_]_l/mﬁ, qs = el/ZSﬁ* (V*)_l_l/mé

’

ff — e7/4sﬁ* (fO + ﬁﬂ-w)a f*l — el/2sﬁ* (V*)_l_l/m(fl + 12}10).

Then’ (w*v Pg, Ty Q*) satisfies

Loy +Vp)= )+ ()b, V-w,=0 in Q.
E*Z*'qu*:f*l +(el/25,3*(y*)*17]/m)12, VZ*ZO irl Q,
Wy =24=0 on X,
wx(0)=0, z.,(T)=0 in £2.

From the fact that fO + (e7/*F");i € L2(Q)N and f! + (e!/*F" (y*)~1=1/m),z € L>(0, T; H~'(2)"), we have
indeed

wy € L2(0,T; H*(2)N) N L™, T; V)
and
2. € L2(0,T; H'(2)N) N L™(0, T; H)
(see (2.4)). Finally let (Zus, gss) = € /2P (y*)=272/m (2 4). Then, (Zsx, gxs) satisfies

* —2-2 ~ .
E*z**—i-vcl**:f*]*—i-(el/zsﬁ (,y*) /m)tz’ VZ**:O in Q’

Z**=O on E,
2w (T) =0 in £2,

where f = e/ (y*) 722 (£l 4 i1p) € L2(Q)N and (e'/*F" (y*)~272/™m),5 € L2(Q)V. Using again (2.4),
we deduce that

Zex € L2(0, T H*(2)N) N L0, T; V).

This concludes the proof of Proposition 4.3. 0O
5. Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1 using similar arguments to those in [13] (see also [4,8,11,12]).
The result of null controllability for the linear system (4.1) given by Proposition 4.3 will allow us to apply an inverse
mapping theorem. Namely, we will use the following result (see [1]).

Theorem 5.1. Let By and By be two Banach spaces and let A : By — By satisfy A € CY(By; By). Assume that
by € By, A(by) = by and that A'(by) : By — By is surjective. Then, there exists § > 0 such that, for every b’ € By
satisfying ||b' — by || g, < 6, there exists a solution of the equation

AMb)=0b', beBy.
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Recall that we deal with the control system:

Lw+w -VYw+Vpl=f4+vl, V-w=0 in Q,
L¥2+(z-V)w—(w-V)z+Vg=wlp, V-z=0 inQ, 5.0)
w=z=0 on X,
w(@0) =0, z(T)=0 in £2,

that is, we look for a control v, with v; = 0, such that z(0) = 0. We apply Theorem 5.1 setting
By =E;,

B, — L2(67/2Sﬂ* (y*)iz(o, T); LZ(Q)N) < Lz(ezxﬁ* (y*)75/2

0.7); L*()"),
and the operator
A(w, p’.z.4, v) = (Lw + - VIw+ Vp® — vl Lf2+ (z-Vw—(w-V)z+ Vg —wlp)

for (w, p°, z,q,v) € E;.
In order to apply Theorem 5.1, it remains to check that the operator A is of class C1(By; B>). Indeed, notice that
all terms in A are linear, except for (w - V)w, (z - V/)w and (w - V)z. We will prove that the bilinear operator

((wl’pO,l’Zl’ql’ Ul), (w2’p0,2’z2,q2, UZ)) — (wl ~V)w2
is continuous from By x By to L2(e7/%F" (y*)=2(0, T); L2(£2)™). To do this, notice that
4w e L2(0, T; H2(2)Y) N L™®(0, T; V),
for any (w, po, Z,q,V) € By, so we have
MWl e L2(0,T; L)) and  V(e7/*F w?) € L%(0, T; L2(2)M V).
Consequently, we obtain
€728 (w" - V) w?| g = [ (74P w" - 9)e W o

< ” o1/4sB* 7/4sp*

“ﬂ”mejrvy

and the continuity in L2(e7/255* (y*)_Z(O, T); L?(£2)N) follows since (y*)_2 is bounded.
In a similar way, we prove that

((wl’ pO,l’ zl,ql, vl)’ (wZ’ p0,2’z2’q2’ UZ)) — (wl . V)Z2

is continuous from B; x B; to L%(e*F" (y*)73/2(0, T); L?(£2)N). Notice now that

w! ||L2<0,T;L°°(Q>N> e

VBB ()T e 120, T HA(2)N) N L0, T; V),
for any (w, po, Z,4,v) € By, thus el/2sB” ()/")_2_2/’”z2 € L*°(0, T; V). We have
”69/45,3* (y*)—2—2/m(w1 . V)Z2 ||L2(Q)N
= (74wt V) 2 () 2

< ||e7/4sﬂ* 1/2sp* (]/*)

—2-2
w! ”LZ(O,T;LOO(.Q)N) ”e /m? ”LOO(O,T; V)’

and the continuity follows since 9/4 > 2.
By the same computations as before, we can prove that the bilinear operator

((wl’ po’l,zl,ql, vl)’ (wZ’ [70'2,22,6]2, UZ)) — (Zl _Vt)wZ
is continuous from B; x B; to L%(e*F" (y*)73/2(0, T); L2(£2)N) just by taking into account that

P ()M e L2(0, T L (@)V).
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Notice that .A’(0,0,0,0,0) : By — B, is given by
A'(0,0,0,0,0)(w, p° z,q,v) = (Lw + Vp® — vy, L2 + Vg — wilp)

for all (w, p°,z,q,v) € By, so this functional is surjective in view of the null controllability result for the linear
system (4.1) given by Proposition 4.3.

We are now able to apply Theorem 5.1 for b; = (0, 0, 0, 0, 0) and b, = (0, 0). In particular, this gives the existence
of a positive number § > O such that, if ||eC/’mf||Lz(Q)N < 4, for some C > 0, then we can find a control v, with
v; = 0, such that the associated solution (w, z) to (5.1) satisfies z(0) = 0.

This concludes the proof of Theorem 1.1.
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