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1. Introduction

Let © be a nonempty bounded connected open subset of RN (N = 2 or 3) of class C*°. Let T' > 0 and
let w C Q be a (small) nonempty open subset which is the control domain. We will use the notation
Q=0x(0,T) and ¥ =092 x (0,T).

We will be concerned with the following controlled Navier—Stokes system:

ye—Ay+(y-V)y+Vp=vl, inQ,

V-y=0 in Q,
y=0 on 3, (1.1)
y(0) =y° in Q,

where v stands for the control which acts over the set w.

The main objective of this work is to obtain the local null controllability of system (1.1) by means of
N — 1 scalar controls, i.e., we will prove the existence of a number 6§ > 0 such that, for every y° € X (X
is an appropriate Banach space) satisfying

Ily°llx <6,
and every i € {1,..., N}, we can find a control v in L?(w x (0,7))" with v; = 0 such that the corre-
sponding solution to (1.1) satisfies
y(T) =01in Q.

This result has been proved in [4] when @ intersects the boundary of 2. Here, we remove this geometric
assumption and prove the null controllability result for any nonempty open set w C . A similar result
was obtained in [2] for the Stokes system.

Let us recall the definition of some usual spaces in the context of incompressible fluids:

V={yeH}(Q)Y:V-y=0in Q}
and
H={ycL?QY:V.y=0inQ, y-n=0on 0Q}.

Our main result is given in the following theorem:

) Birkhauser
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Theorem 1.1. Let i € {1,...,N}. Then, for every T > 0 and w C 2, there exists 6 > 0 such that, for
every y° € V satisfying

I1°llv <6,

we can find a control v € L?(w x (0,T))N, with v; =0, and a corresponding solution (y,p) to (1.1) such
that

y(T) =0,

i.e., the nonlinear system (1.1) is locally null controllable by means of N —1 scalar controls for an arbitrary
control domain.

Remark 1.2. For the sake of simplicity, we have taken the initial condition in a more regular space than
usual. However, following the same arguments as in [3] and [4], we can get the same result by considering
y® € H for N =2 and y° € HN L*(Q)3 for N = 3.

To prove Theorem 1.1, we follow a standard approach (see for instance [3], [4] and [6]). We first deduce
a null controllability result for a linear system associated to (1.1):

ye —Ay+Vp=f+ovl, inQ,

V-y=0 in Q,
y=20 on X, (1.2)
y(0) =" in Q,

where f will be taken to decrease exponentially to zero in T'. We first prove a suitable Carleman estimate
for the adjoint system of (1.2) (see (2.4) below). This will provide existence (and uniqueness) to a vari-
ational problem, from which we define a solution (y,p,v) to (1.2) such that y(T) = 0 in Q and v; = 0.
Moreover, this solution is such that /("= (y, v) € L2(Q)N x L?*(w x (0,T))" for some C > 0.

Finally, by means of an inverse mapping theorem, we deduce the null controllability for the nonlinear
system.

This paper is organized as follows. In Sect. 2, we establish all the technical results needed to deal with
the controllability problems. In Sect. 3, we deal with the null controllability of the linear system (1.2).
Finally, in Sect. 4 we give the proof of Theorem 1.1.

2. Some Previous Results

In this section we will mainly prove a Carleman estimate for the adjoint system of (1.2). In order to do
so, we are going to introduce some weight functions. Let wy be a nonempty open subset of RY such that
Wo C w and 1 € C?(Q) such that

|Vn| >0in Q\wy,n>0in Q and 7 =0 on ON. (2.1)

The existence of such a function 7 is given in [5]. Let also £ € C°°([0,T]) be a positive function in (0,T")
satisfying

Lt)y=t iftel0,T/4],0t)=T—-t ifte[37/4,T],

L(t) < 4(T)/2), for all t €]0,T). (2.2)
Then, for all A > 1 we consider the following weight functions:
e2Mnlloe — pAn(=) ()
e e

a(t) = glea%a(m,t), §°(t) = gleirﬁlﬁ(x,t%
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a(t) = inei%la(x,t), (t) = rfggﬁ(x,t). (2.3)

These exact weight functions were considered in [7].
We consider now a backwards nonhomogeneous system associated to the Stokes equation:

—ps —Ap+Vr =g in Q,

V-p=0 in @,
p=0 on X, (2.4)
o(T) =" in Q,

where g € L2(Q)Y and ¢ € H. Our Carleman estimate is given in the following proposition.

Proposition 2.1. There exists a constant g, such that for any A > g there exist two constants C(\) > 0
and so(\) > 0 such that for any i € {1,...,N}, any g € L*(Q)N and any ©* € H, the solution of (2.4)

satisfies
// —osa” (e o2 di

N
// e 35 |g2da dt + s7 Z
Q

j=1.j#i

T
/ / ¢=20-350" (7| 2 dt (2.5)
0

w
for every s > sg.

The proof of inequality (2.5) is based on the arguments in [2], [3] and a Carleman inequality for
parabolic equations with non-homogeneous boundary conditions proved in [7]. In [2], the authors take
advantage of the fact that the Laplacian of the pressure is zero, but this is not the case here. Some
arrangements of Eq. (2.4) have to be made in order to follow the same strategy. More details are given
below.

Before giving the proof of Proposition 2.1, we present some technical results. We first present a
Carleman inequality proved in [7] for parabolic equations with nonhomogeneous boundary conditions. To
this end, let us introduce the equation

N
Ut — Au = fo + Z@jfj il’l Q, (26)

j=1
where fo, f1,..., fv € L*(Q). We have the following result.

Lemma 2.2. There exists a constant /):0 only depending on €, wy,n and £ such that for any A > ;\\0 there
exist two constants C(X\) > 0 and 3(\), such that for every s > 3 and every u € L*(0,T; H*(Q)) N
HY(0,T; H=Y(Q)) satisfying (2.6), we have

// T2 |Vu|2dxdt+s// —2s0 gy |2 de dt

sc( e tul?

N
1 —2sa 1 TS
+S—2//e 2 5—2|f0|2d:cdt+2//e 20| 22 da dt
Q =g
T
+s//e‘2$a§|u\2da@dt . (2.7)

0 wo

+ 572 e e w w3,
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Recall that

1/2
2 2
el 4.3 gy = (NelBisssc0. 220 + IelEeo ziarnvzcony) -
The next technical result is a particular case of Lemma 3 in [2].

Lemma 2.3. There exists Xl >0 and C > 0 depending only on Q,wy,n and ¢ such that, for every T >0
and every u € L*(0,T; H*()),

T
s3\2 // e 25 )2 dx dt < C 3//67280‘£\Vu|2d17dt+83/\2//67250‘§3|u|2d$dt ;o (2.8)
Q Q 0 wo

for every A > Xl and every s > C'.

Remark 2.4. In [2], slightly different weight functions are used to prove Lemma 2.3. Indeed, the authors
take £(t) = t(T —t). However, this does not change the result since the important property is that ¢ goes
to 0 algebraically when ¢ tends to 0 and 7.

The next lemma can be readily deduced from the corresponding result for parabolic equations in [5].

Lemma 2.5. Let {(x) = exp(An(x)) for x € Q. Then, there exist o >0 and C >0 depending only on
Q,wo and n such that, for every uw € HE(Q) N H?(Q),

TGA8/62T<C6|U\2dz+T4/\6/e2TCC4|VU|2dIS C T3)\4/€2TCC3‘AU‘2dI+T6/\8/627<<6|U|2d$ ,
Q Q Q wo
(2.9)

for every A\ > Xg and every T > C.

The final technical result concerns the regularity of the solutions to the Stokes system that can be
found in [8] (see also [9]).

Lemma 2.6. For every T > 0 and every F € L?>(Q)Y, there exists a unique solution u € L(0,T; H*(2)V)N
HY(0,T; H) to the Stokes system

u—Au+Vp=F inQ,

V-u=0 mn Q,
u =0 on X,
u(0) =0 in €,

for some p € L?(0,T; HY(Q)), and there exists a constant C > 0 depending only on Q such that

lall 220,72 (0yny + Nll3 o, 7:0200)%) < CIF 72y (2.10)

Furthermore, if F € L*>(0,T; H*(Q)N)n HY(0,T; L*(Q)N), then
u € L2(0,T; HY(Q)N) N HY(0,T; H2(Q)N) and there exists a constant C > 0 depending only on Q such
that

[ull 20,71~y F Wl F 0.7 m2098) < CUFNZ 20 m2000%) + 1F 10,7020 %) - (2.11)

2.1. Proof of Proposition 2.1

Without any lack of generality, we treat the case of N = 2 and i = 2. The arguments can be easily
extended to the general case. We follow the ideas of [2]. In that paper, the arguments are based on the
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fact that Am = 0, which is not the case here [recall that 7 appears in (2.4)]. For this reason, let us first
introduce (w, q) and (z,r), the solutions of the following systems:

—w; — Aw + Vg = pg in Q,
V-w=0 in Q,

w=0 on X, (2.12)
w(T)=0 in Q,

and
-z —Az4+Vr=—pp inQ,
V-z=0 in Q,
z=0 on X, (2.13)
z2(T)=0 in Q,

where p(t) = e~ 3%%", Adding (2.12) and (2.13), we see that (w + z,q + r) solves the same system as
(pp, pm), where (o, m) is the solution to (2.4). By uniqueness of the Stokes system we have

pp=w+z and pw=q-+r. (2.14)
For system (2.12) we will use the regularity estimate (2.10), namely
Hw||2L2(O,T;H2(Q)2) + ”wH%Il(O,T;LQ(Q)?) < C”IOQHQL?(Q)Z, (2.15)

and for system (2.13) we will use the ideas of [2]. Using the divergence free condition on the equation of
(2.13), we see that

Ar=0in Q.

Then, we apply the operator VA = (91 A, 92A) to the equation satisfied by z; and we denote ¢ := VAz;.
We then have

—the — A = =V(A(p'¢1)) in Q.

We apply Lemma 2.2 to this equation and we obtain

I(s;9) := ié/e28a2|w|2dxdt+sé/e28a§|¢|2dxdt

L1 saed C1y el
< O (s Hle e ol g o H e by
T
+//e*25a|p/|2|A<p1|2da7dt+s//e*25a§|w|2dxdt , (2.16)
Q 0 wo

for every \ > Xo and s > s.
We divide the rest of the proof in several steps:
e In Step 1, using Lemmas 2.3 and 2.5, we estimate global integrals of z; and z; by the left-hand side
of (2.16).
e In Step 2, we deal with the boundary terms in (2.16).
e In Step 3, we estimate all the local terms by a local term of ¢; and € I(s; ) to conclude the proof.

Now, let us choose \g = max{xo,xl,xg} so that Lemmas 2.3 and 2.5 can be applied and fix A > Ag.
In the following, C will denote a generic constant depending on Q,w and A.
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Step 1. Estimate of z;. We use Lemma 2.3 with u = Azq:

T
s //67250(&3‘A21‘2d117dt <C s//ef2sa§\1/1\2d:17dt+53//6725a§3|A21|2dIdt . (2.17)
Q Q 0 wo

for every s > C.
Now, we apply Lemma 2.5 with u = z; € H (2)N H?(Q) and we get, for almost everywhere ¢ € (0,7):

76/627—<C6|Z1|2d$+T4/€2‘r<§4|v21|2d$ <C 73/6274§3|A21|2dx+76/6274C6|zl|2dx ,
Q Q Q wo

for every 7 > C. Now we take
s

A0

for s large enough so we have 7 > C. This yields to, for almost everywhere ¢t € (0,T),

56/e2s§§6|z1|2d:c+s4/625554|v,21|2dx <C 53/625§€3|A2’1|2d1‘+S6/62S§§6|21|2dm ,
Q Q Q wo
for every s > C. We multiply this inequality by

) e2AInlloo
ex"(s (0 >
and we integrate in (0,7) to obtain

// “250e0 2|2 d dt + s* // “20 eV 2de dt
<C|s // e 23| Az |Pdr dt+86//€725a§6|21|2d$dt ,
Q 0 wo

for every s > C. Combining this with (2.17) we get the following estimate for z:

58 // e 25¢0 2y |2 dadt + s* // e8¢ V2, |2 dadt
Q Q
+5° //6_250‘§3|A21|2dazdt <C s// e 25 ¢ P du dt
Q Q

T T
—1—53//6_2‘“’53\Az1\2dmdt+56//6_230‘56|zl|2d1‘dt ) (2.18)
0 wo 0 wo
for every s > C.

Estimate of zo. Now we will estimate a term in 2z by the left-hand side of (2.18). From the divergence
free condition on z we find

54// —2s07 (e 0y 20 |2 da dt = s* // —2s07 (€0 2 Pda dt
Q

< st // e 25 V2 |2 du dt. (2.19)
Q
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Since zs]aq = 0 and ) is bounded, we have that

/|z2|2d:c < C’(Q)/|82z2|da:,

Q Q

and because a* and &* do not depend on x, we also have

// ~2s07 ()4 29| 2da dt < C(Q // —2s07 (e 9y 20 |2 da dt.

Combining this with (2.19) we obtain

st // e 259 (e)4 292 da dt < C's* // e 2NV 2 |2 d dt. (2.20)
Q Q

Now, observe that by (2.14), (2.15) and the fact that s?e~25%(¢*)%/* is bounded we can estimate the
third term in the right-hand side of (2.16). Indeed,

[[emrinapasd = [[ el 2100 Pdode
Q Q
s> //6_250‘(5*)9/4\Aw1|dxdt+52 // ~Zsa(e¥)9/4 Az |da dt
Q Q

< C [ lpglzaop + // 250 (%)% Ay |do dt

Putting together (2.16), (2.18), (2.20) and this last inequality we have for the moment

// —250e6) 2 Pdadt + st // =207 (94 29| 2 dadt
// *2sa§3|Azl|2dxdt+s// e 25 || dadt + - // ~2sa |v¢|2dxdt

<o (sl oy g,

T T T
+8//6725a£‘1/}|2d1‘dt+53//672SQES|A21|2d$dt+36//672sa§6‘21|2d$dt , (2.21)

0 wo 0 wo 0 wo

+577e T YT (m)z + 0gll72 (02

for every s > C.

Step 2. In this step we deal with the boundary terms in (2.21).
First, we treat the second boundary term in (2.21). Notice that, since o and £ coincide with o* and
&* respectively on X,

Csat PR | Tl gat ey
e Y[z (myz < Cllsze™ (€929 2@p2lls 2™ (£%) 72 VY| 12

<C s//e*%a*g*mzdxdw 1//6*2““%\wrzdgcdt ,
S
Q Q
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S0 ||e_sa*¢||%2(2)2 is bounded by the left-hand side of (2.21). On the other hand,

_1 _ _1 _1 _
572 ]le T T Yo (e < Cs T2 [leT oy,

and we can absorb s~ 2 He‘so‘w||2L2(Z)2 by taking s large enough.

Now we treat the first boundary term in the right-hand side of (2.21). We will use regularity estimates
to prove that z; multiplied by a certain weight function is regular enough. First, let us observe that from
(2.14) we readily have

st //e—%a*(g*)4|p|2\¢|2dxdt < 24 //e—%a*(g*)ﬂwﬁdx dt + 2s* //e‘25a*(§*)4\z|2dxdt.
Q Q Q

Using the regularity estimate (2.15) for w we have

// —2sa% (Y| p|?|p|2da dt < C ||ngL2(Q)z +s // 20 (e |z Pdx dt | (2.22)

thus the term ||s2e—5" (E*)ngonLg(Q)2 is bounded by the left-hand side of (2.21) and Hpg||%2(Q)z
We define now

7= se*m*(f*)wsz, 7= se*m*(é*)”sr.
From (2.13) we see that (Z,7) is the solution of the Stokes system:
% — AT F VF = —se5 ()8 p — (se5* (6*)7/8),2 in Q,

VZZO inQa
z=0 on X,
Z(T)=0 in Q.

Taking into account that
lag] < C(E)Y5, |p'] < Csp(€7)*/*

and the regularity estimate (2.10) we have
121172 0,712 ()2 1 (0,7 L2 (02) < C (||5 e Sa*(f*)%@\\%%@)z + |\3267SQ*(§*)22|\12(Q)2) ,

thus, from (2.22), |lse=5" (5*)7/82||2L2(07T;H2(Q)2)0H1(O,T;LQ(Q)Q) is bounded by the left-hand side of (2.21)
and Hpg||%2(Q)2. From (2.14), (2.15) and this last inequality we have that

lse™**"(€")® ppll 2 0 7112 )2y (0,73 2002y < C (HPQ||2L2(Q)2 + ||5||2L2(0,T;H2(Q)2)nH1(o,T;L2(Q)2)> ;

and Ehus [[se=se” (f*)7/8P<PH%2(0,T;H2(Q)z)mHl(O’T;LZ(Q)z) is bounded by the left-hand side of (2.21) and
||Pg||L2(Q)2
Next, let
7 .= e—sa* (5*)—1/42’ 7= e—sa* (5*)_1/47“.
From (2.13), (z,7) is the solution of the Stokes system:
—2 — AT VF= —e 5 (%)~ V4o — (e75" (£*)~1/4),z in Q,
V-z=0 in Q,
z=0 on %,
zZ(T)=0 in Q.
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From the previous estimates, it is not difficult to see that the right-hand side of this system is in

L2(0,T; H*(Q)*) N HY(0,T; L*(£2)?), and thus, using the regularity estimate (2.11), we have
121220 7.4 (2)2y 2 (0.1 2 (0)2) < C (Hé’e—m (f*)7/8/)90||2L2(o,T;HZ(Q)z)mHl(o,T;L2(Q)2)

+|[se™* (5*)7/82H%2(0,T;H2(SZ)Z)OHl(O,T;L2(Q)2)> :

In particular, e (¢*)~1 /4 € L2(0,T; H(Q)?) N HY(0,T; H'(2)?) (recall that ¢ = VAz;) and

e (5*)_1/4¢||2L2(0,T;H1(Q)2) and [le”*" (5*)_1/4¢||§{1(0,T;H*1(Q)2)
are bounded by the left-hand side of (2.21) and ||pg||7 .
To end this step, we use the following trace inequality

12 lemrog iy 2 S e G R R

< 0572 (e (€)Ml orn

+||e—sa (6*)—1/4,(#”%{1(07,1.,;1{71(9)2)) .

By taking s large enough in (2.21), the boundary term
572 |le e y)2

Hi 2(2

can be absorbed by the terms in (2.23) and step 2 is finished.
Thus, at this point we have

st // 6—23(1* (5*)4|p|2|¢|2da§dt+83 // e—2$@§3‘AZ1‘2dx dt
Q Q
+s//e*2m§|VAzl|2dmdt+1//6723"%|A221|2dmdt
S
Q Q

T
< C ||ng%2(Q)2 +S6//6_28a§6‘21|2d$dt

0 wo

T T
+S//6725af|VA21|2d:L‘dt+83//6725a£3|A21|2d1dt ,
0 wo 0 wo

HT3(%)?

for every s > C.

(2.23)

(2.24)

Step 3. In this step we estimate the two last local terms in the right-hand side of (2.24) in terms of
local terms of z; and the left-hand side of (2.24) multiplied by small constants. Finally, we make the final

arrangements to obtain (2.5).

We start with the term VAz; and we follow a standard approach. Let w; be an open subset such that
wp € wp € w and let p; € C’f(wl) with p; =1 in wy and p; > 0. Then, by integrating by parts we get

T T
s//e*QSa§|VAzl|2dxdt < s//plefgsaﬂVAzﬂzdxdt
0

= —3//,0 e BN Azda dt + = //A e ) | Az |Pda dt.

Using Cauchy—Schwarz’s mequahty for the first term and
A(pre>?¢)| < Cs%e %, s > C
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for the second one, we obtain for every € > 0

T T
s//e_28a5|VAzl|2dxdt§ E//6_250‘ A%z *dx dt + O(e) // T2 | Az P d dt,
s

0 wo 0 wi 0 wy

for every s > C.
Let us now estimate Az;. Let ps € C%(w) with py = 1 in w; and py > 0. Then, by integrating by parts
we get

T

T
83//6_280‘§3|Az1|2d$dt < 33//,026_280‘53|Az1|2dxdt
0 w

0 w1

T
:233//V p26725a£3 VAz - zdedt + s3 //A *250‘53)A21 z1dx dt
0 w

T
+83//pge’2m§3A221 - z1dx dt.
0 w

Using
[V (p2e™2°¢%)| < Cse ¢ s > C,
for the first term in the right-hand side of this last inequality,
|A(pasBe=259€3)| < OsPe™250¢5, 5 > C,

for the second one and Cauchy—Schwarz’s inequality we obtain for every ¢ > 0

T
// 203 Az Pdedt <e // ~25al 2zl|2dxdt+s//6_25"‘§|VA21|2dxdt
0 wi 0 w
+s // e 2| Az Pdr dt | + Cle // —2s0eT| 2 |2 da dt,
for every s > C.

Finally, from (2.14) and (2.15) we readily obtain

T
// e 250721 Pda dt < 257 // —250 T 512 o1 | 2dzdt+257//e’230‘§7|w1\2dzdt
0 w
<27 / [ e IoPlin Paade + Clogll oy

This concludes the proof of Proposition 2.1.
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3. Null Controllability of the Linear System

Here we are concerned with the null controllability of the system

ye —Ay+Vp=f+ovl, inQ,

V-y=0 in Q,
Y :yO on X, (3.1)
y(0) =y° in Q,

where y° € V, f is in an appropriate weighted space and the control v € L?(w x (0,T))" is such that
v; = 0 for some i € {1,...,N}.

Before dealing with the null controllability of (3.1), we will deduce a new Carleman inequality with
weights not vanishing at ¢ = 0. To this end, let us introduce the following weight functions:

llee _ An(a) (@)
Bz, t) = T, y(x,t) = B
B*(t) = max (z,t), v*(t) = min y(z,1),
zeN zeQ
A(t) = min f(z,t), F(t) = max~y(z, 1), (3.2)
x€eQ TEQ

where

; 4o 0<t<TY2,
4= {K(t) T/2<t<T.

Lemma 3.1. Leti € {1,...,N} and let s and X be like in Proposition 2.1. Then, there exists a constant
C > 0 (depending on s and \) such that every solution ¢ of (2.4) satisfies:

// e () Pda dt + [ 9(0) 122y
q

N T
<C //G’SSB*Iglzda:dt+ > /e*zsﬁ’“ﬁ*ﬂgpﬂ?dxdt . (3.3)
Q J=15#iy

Proof. We start by an a priori estimate for the Stokes system (2.4). To do this, we introduce a function
v € C*([0,T]) such that

v=1 in[0,7/2], v=0 in [3T/4,T].
We easily see that (v, vm) satisfies

—(ve)i — A(ve) + V(vyp) =vg —v'yp in Q,

V-(vr)=0 in Q,
(vp)=0 on ¥,
(ve)(T) =0 in Q,

thus we have the energy estimate
v @ll7 20,71 (yvy + VPl T e 0,220y < CUIVGIT2pn + 1V @l 2(0)v),
from which we readily obtain
lelZ20.7/2:02 %) + 10O 1720y < CUlgl72(0.57 /012~y + 1211 T2 (/2,57 4,12 @) ™)) -
From this last inequality, and the fact that
e3P >0 >0, Vtel0,37/4 and e (&) >C >0, Vte|T/2,37/4]
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we have
T/2 3T/4 3T/4
/ / =55" ()4 o2 dt-+]|9(0) |2y < C / / 39 g 2du i+ / / 5 (¢%) o 2dr dt |.
0 Q T/2 Q
(3.4)
Note that, since « = 8 in Q x (T/2,T), we have:
T
/ / 598" (oYl dt = / / 5 (€Y pl2da d
T/2 Q T/2 Q
<c [[ e @) opard
Q

and by the Carleman inequality of Proposition 2.1

N T
// —566 |SD| dxdt < C // —3sa” |g| do dt + Z //e 2sa—3sa” )7|g0j|2dxdt
=Tl D

T/2 Q j=1,j#i
Since

e3B" 2B=3B"5T > 0 5 0, vt € [0,T/2),

T
//6_2Sﬁ_355*a7‘¢j|2daﬁdt ,
0 w

we can readily get

// =930 (v g2 da dt < C // =367 g2 da: dt + Z

T/2 Q j=1,5#1
which, together with (3.4), yields (3.3).

Now we will prove the null controllability of (3.1). Actually, we will prove the existence of a solution
for this problem in an appropriate weighted space.
Let us set

Ly =y — Ay
and let us introduce the space, for N =2 or 3 and i € {1,...,N},
By ={(y,p,v) : €325y, 0320571201, € L2(Q)N, v = 0,
3/235*( *)—9/8 c L2(O T, HZ(Q)N) ﬂLOO(O,T; V),
e () 2Ly + Vp —vly) € L2(Q)V ).

It is clear that E% is a Banach space for the following norm:

o = (1627257 gl + e P2 572 0L R

||<yapav)‘ E
NE AT Y1220 m2yv) T ”63/256*(7*)_9/8y‘|%o¢(0,T;V)
1/2
e ()2 (Ly + Vp — vL0) |32 v )

Remark 3.2. Observe in particular that (y,p,v) € E% implies y(T) = 0 in . Moreover, the functions
belonging to this space possesses the interesting following property:

2 ()2 (y - V)y € L2(Q)N
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Proposition 3.3. Leti e {1,...,N}. Assume that
W eV and /7 (v)72f e LA(Q)N.

Then, we can find a control v such that the associated solution (y,p) to (3.1) satisfies (y,p,v) € Ex. In
particular, v; =0 and y(T) = 0.

Proof. The proof of this proposition is very similar to the one of Proposition 2 in [3] and Proposition 1
in [4], so we will just give the main ideas.
Following the arguments in [5] and [6], we introduce the space

Py ={(x,0) eCz(@)NHSVJ(:O, x=0onX}
and we consider the following variational problem:

a((X,0), (x,0)) = (G, (x,0)) forall (x,0) € Py, (3.5)

where we have used the notations

a((X,0), (x,0)) = // e 38" (L*Y 4+ V5) - (L*x + Vo) da dt

Q

/6_235_335*’/}/\7 X Xj dx dt,
w

<G,<x,o>>=/ f'Xdde/yO'x(O)dx
Q Q

and L* is the adjoint operator of L, i.e.
L' = —xt — Ax.

It is clear that a(-,-) : Py x Py — R is a symmetric, definite positive bilinear form on P,. We
denote by P the completion of Py for the norm induced by a(-,-). Then a(-,-) is well-defined, continuous
and again definite positive on P. Furthermore, in view of the Carleman estimate (3.3), the linear form
(x,0) — (G, (x,0)) is well-defined and continuous on P. Hence, from Lax—Milgram’s lemma, we deduce
that the variational problem

(3.6)

a((X,9), (x,0)) = (G, (x,0))
for all (x,0) € P, (X,0) € P,

possesses exactly one solution (¥, ).
Let i and © be given by
7=e (LY + Vo), in Q,
U= —e 2PIFTR (j#4), Bi=0 inwx(0,T).
Then, it is readily seen that they satisfy
N T =
[ e arasars Y [ [0 5 g vt = al(3,9). (2.5) < o0
o J=Li#iy o

and also that 7 is, together with some pressure p, the weak solution (belonging to L?(0,T;V) N L>
(0,T; H)) of the Stokes system (3.1) for v = .
It only remains to check that

e () 0% € LP(0, T: HA(Q)N) N L2(0, T3 V).
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To this end, we define the functions
gt = &3/2P ()T G pF = 312587 (1) =Y/8 5
and
1= () TR (f 0L,
Then (y*, p*) satisfies
Ly* +Vp" = f*+ (> (y) %), 5 in Q,

v . y* = O in Q7
y =0 on X, (3.7)
v0) = PO ) e

From the fact that f* 4 (e3/2587 (v*)=9/8), 5 € L*(Q)" and y° € V, we have indeed
y* e L2(0,T; H*(Q)N) N L*>(0,T;V)
[see (2.10)]. This ends the sketch of the proof of Proposition 3.3.

4. Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1 using similar arguments to those in [6] (see also [3] and
[4]). The result of null controllability for the linear system (3.1) given by Proposition 3.3 will allow us to
apply an inverse mapping theorem, namely (see [1]),

Theorem 4.1. Let By and Bs be two Banach spaces and let A : By — By satisfy A € CY(By; Bs). Assume
that by € By, A(by1) = by and that A'(by) : By — Bs is surjective. Then, there exists & > 0 such that, for
every b’ € By satisfying ||b' — ba|| B, < 0, there exists a solution of the equation

A) =1V, be B;.
We apply this theorem setting, for some given i € {1,..., N},
B, = EY,
By = LA(e¥/29 () 72(0,T); LA(Q)™) x V
and the operator
Aly,p,v) = (Ly + (y - V)y + Vp — vl y(0))

for (y,p,v) € EY.
In order to apply Theorem 4.1, it remains to check that the operator A is of class C*(By; Bs). Indeed,
notice that all the terms in A are linear, except for (y - V)y. We will prove that the bilinear operator

(" ph 0", (%, 0% 0%) — (y' - V)y?

is continuous from By x By to L?(e%/2%7 (v*)=2(0,T); L*>(Q)N). To do this, notice that e3/258™ (y*)=9/8y ¢
L2(0,T; H*(Q)N)N L>=(0,T; V) for any (y,p,v) € By, so we have

20 () 7By € L2(0,T; L=()™)
and
V(€307 ()7 By) € L0, T; L2 ()M).
Consequently, we obtain
€527 () 2y - V)P iz < CIEX 2 (7) 7Byt )28 (") VB 2 gy

< CHeB/Qsﬂ* (7*)_9/8y1 ||L2(0,T;L°°(Q)N) ||€3/255* (’Y*)_Q/SyQ ||L°°(0,T;H1(Q)N)~
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Notice that A’(0,0,0) : By — By is given by
A(0,0,0)(y. p,v) = (Ly + Vp,y(0)), for all (y,p,v) € By,

so this functional is surjective in view of the null controllability result for the linear system (3.1) given
by Proposition 3.3.

We are now able to apply Theorem 4.1 for b, = (0,0,0) and b = (0,0). In particular, this gives the
existence of a positive number ¢ such that, if ||y(0)||y < &, then we can find a control v satisfying v; = 0,
for some given ¢ € {1,..., N}, such that the associated solution (y,p) to (1.1) satisfies y(T') = 0 in €.

This concludes the proof of Theorem 1.1.
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