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1. Introduction

Let Ω be a nonempty bounded connected open subset of R
N (N = 2 or 3) of class C∞. Let T > 0 and

let ω ⊂ Ω be a (small) nonempty open subset which is the control domain. We will use the notation
Q = Ω × (0, T ) and Σ = ∂Ω × (0, T ).

We will be concerned with the following controlled Navier–Stokes system:
⎧
⎪⎪⎨

⎪⎪⎩

yt − Δy + (y · ∇)y + ∇p = v1ω in Q,
∇ · y = 0 in Q,
y = 0 on Σ,
y(0) = y0 in Ω,

(1.1)

where v stands for the control which acts over the set ω.
The main objective of this work is to obtain the local null controllability of system (1.1) by means of

N − 1 scalar controls, i.e., we will prove the existence of a number δ > 0 such that, for every y0 ∈ X (X
is an appropriate Banach space) satisfying

‖y0‖X ≤ δ,

and every i ∈ {1, . . . , N}, we can find a control v in L2(ω × (0, T ))N with vi ≡ 0 such that the corre-
sponding solution to (1.1) satisfies

y(T ) = 0 in Ω.

This result has been proved in [4] when ω intersects the boundary of Ω. Here, we remove this geometric
assumption and prove the null controllability result for any nonempty open set ω ⊂ Ω. A similar result
was obtained in [2] for the Stokes system.

Let us recall the definition of some usual spaces in the context of incompressible fluids:

V = {y ∈ H1
0 (Ω)N : ∇ · y = 0 in Ω}

and

H = {y ∈ L2(Ω)N : ∇ · y = 0 in Ω, y · n = 0 on ∂Ω}.
Our main result is given in the following theorem:
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Theorem 1.1. Let i ∈ {1, . . . , N}. Then, for every T > 0 and ω ⊂ Ω, there exists δ > 0 such that, for
every y0 ∈ V satisfying

‖y0‖V ≤ δ,

we can find a control v ∈ L2(ω × (0, T ))N , with vi ≡ 0, and a corresponding solution (y, p) to (1.1) such
that

y(T ) = 0,

i.e., the nonlinear system (1.1) is locally null controllable by means of N−1 scalar controls for an arbitrary
control domain.

Remark 1.2. For the sake of simplicity, we have taken the initial condition in a more regular space than
usual. However, following the same arguments as in [3] and [4], we can get the same result by considering
y0 ∈ H for N = 2 and y0 ∈ H ∩ L4(Ω)3 for N = 3.

To prove Theorem 1.1, we follow a standard approach (see for instance [3], [4] and [6]). We first deduce
a null controllability result for a linear system associated to (1.1):

⎧
⎪⎪⎨

⎪⎪⎩

yt − Δy + ∇p = f + v1ω in Q,
∇ · y = 0 in Q,
y = 0 on Σ,
y(0) = y0 in Ω,

(1.2)

where f will be taken to decrease exponentially to zero in T . We first prove a suitable Carleman estimate
for the adjoint system of (1.2) (see (2.4) below). This will provide existence (and uniqueness) to a vari-
ational problem, from which we define a solution (y, p, v) to (1.2) such that y(T ) = 0 in Ω and vi = 0.
Moreover, this solution is such that eC/(T−t)(y, v) ∈ L2(Q)N × L2(ω × (0, T ))N for some C > 0.

Finally, by means of an inverse mapping theorem, we deduce the null controllability for the nonlinear
system.

This paper is organized as follows. In Sect. 2, we establish all the technical results needed to deal with
the controllability problems. In Sect. 3, we deal with the null controllability of the linear system (1.2).
Finally, in Sect. 4 we give the proof of Theorem 1.1.

2. Some Previous Results

In this section we will mainly prove a Carleman estimate for the adjoint system of (1.2). In order to do
so, we are going to introduce some weight functions. Let ω0 be a nonempty open subset of R

N such that
ω0 ⊂ ω and η ∈ C2(Ω) such that

|∇η| > 0 in Ω \ ω0, η > 0 in Ω and η ≡ 0 on ∂Ω. (2.1)

The existence of such a function η is given in [5]. Let also � ∈ C∞([0, T ]) be a positive function in (0, T )
satisfying

�(t) = t if t ∈ [0, T/4], �(t) = T − t if t ∈ [3T/4, T ],
�(t) ≤ �(T/2), for all t ∈ [0, T ]. (2.2)

Then, for all λ ≥ 1 we consider the following weight functions:

α(x, t) =
e2λ‖η‖∞ − eλη(x)

�8(t)
, ξ(x, t) =

eλη(x)

�8(t)
,

α∗(t) = max
x∈Ω

α(x, t), ξ∗(t) = min
x∈Ω

ξ(x, t),
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α̂(t) = min
x∈Ω

α(x, t), ξ̂(t) = max
x∈Ω

ξ(x, t). (2.3)

These exact weight functions were considered in [7].
We consider now a backwards nonhomogeneous system associated to the Stokes equation:

⎧
⎪⎪⎨

⎪⎪⎩

−ϕt − Δϕ+ ∇π = g in Q,
∇ · ϕ = 0 in Q,
ϕ = 0 on Σ,
ϕ(T ) = ϕT in Ω,

(2.4)

where g ∈ L2(Q)N and ϕT ∈ H. Our Carleman estimate is given in the following proposition.

Proposition 2.1. There exists a constant λ0, such that for any λ > λ0 there exist two constants C(λ) > 0
and s0(λ) > 0 such that for any i ∈ {1, . . . , N}, any g ∈ L2(Q)N and any ϕT ∈ H, the solution of (2.4)
satisfies

s4
∫∫

Q

e−5sα∗
(ξ∗)4|ϕ|2dx dt

≤ C

⎛

⎝

∫∫

Q

e−3sα∗ |g|2dx dt+ s7
N∑

j=1,j �=i

T∫

0

∫

ω

e−2sα̂−3sα∗
(ξ̂)7|ϕj |2dx dt

⎞

⎠ (2.5)

for every s ≥ s0.

The proof of inequality (2.5) is based on the arguments in [2], [3] and a Carleman inequality for
parabolic equations with non-homogeneous boundary conditions proved in [7]. In [2], the authors take
advantage of the fact that the Laplacian of the pressure is zero, but this is not the case here. Some
arrangements of Eq. (2.4) have to be made in order to follow the same strategy. More details are given
below.

Before giving the proof of Proposition 2.1, we present some technical results. We first present a
Carleman inequality proved in [7] for parabolic equations with nonhomogeneous boundary conditions. To
this end, let us introduce the equation

ut − Δu = f0 +
N∑

j=1

∂jfj in Q, (2.6)

where f0, f1, . . . , fN ∈ L2(Q). We have the following result.

Lemma 2.2. There exists a constant λ̂0 only depending on Ω, ω0, η and � such that for any λ > λ̂0 there
exist two constants C(λ) > 0 and ŝ(λ), such that for every s ≥ ŝ and every u ∈ L2(0, T ;H1(Ω)) ∩
H1(0, T ;H−1(Ω)) satisfying (2.6), we have

1
s

∫∫

Q

e−2sα 1
ξ
|∇u|2dx dt+ s

∫∫

Q

e−2sαξ|u|2dx dt

≤ C

(

s− 1
2 ‖e−sαξ− 1

4u‖2

H
1
4 , 1

2 (Σ)
+ s− 1

2 ‖e−sαξ− 1
8u‖2

L2(Σ)

+
1
s2

∫∫

Q

e−2sα 1
ξ2

|f0|2dx dt+
N∑

j=1

∫∫

Q

e−2sα|fj |2dx dt

+s

T∫

0

∫

ω0

e−2sαξ|u|2dx dt
⎞

⎠ . (2.7)
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Recall that

‖u‖
H

1
4 , 1

2 (Σ)
=

(
‖u‖2

H1/4(0,T ;L2(∂Ω)) + ‖u‖2
L2(0,T ;H1/2(∂Ω))

)1/2

.

The next technical result is a particular case of Lemma 3 in [2].

Lemma 2.3. There exists λ̂1 > 0 and C > 0 depending only on Ω, ω0, η and � such that, for every T > 0
and every u ∈ L2(0, T ;H1(Ω)),

s3λ2

∫∫

Q

e−2sαξ3|u|2dx dt ≤ C

⎛

⎝s

∫∫

Q

e−2sαξ|∇u|2dx dt+ s3λ2

T∫

0

∫

ω0

e−2sαξ3|u|2dx dt
⎞

⎠ , (2.8)

for every λ ≥ λ̂1 and every s ≥ C.

Remark 2.4. In [2], slightly different weight functions are used to prove Lemma 2.3. Indeed, the authors
take �(t) = t(T − t). However, this does not change the result since the important property is that � goes
to 0 algebraically when t tends to 0 and T .

The next lemma can be readily deduced from the corresponding result for parabolic equations in [5].

Lemma 2.5. Let ζ(x) = exp(λη(x)) for x ∈ Ω. Then, there exist λ̂2 > 0 and C > 0 depending only on
Ω, ω0 and η such that, for every u ∈ H1

0 (Ω) ∩H2(Ω),

τ6λ8

∫

Ω

e2τζζ6|u|2dx+ τ4λ6

∫

Ω

e2τζζ4|∇u|2dx ≤ C

⎛

⎝τ3λ4

∫

Ω

e2τζζ3|Δu|2dx+ τ6λ8

∫

ω0

e2τζζ6|u|2dx
⎞

⎠ ,

(2.9)

for every λ ≥ λ̂2 and every τ ≥ C.

The final technical result concerns the regularity of the solutions to the Stokes system that can be
found in [8] (see also [9]).

Lemma 2.6. For every T > 0 and every F ∈ L2(Q)N , there exists a unique solution u ∈ L2(0, T ;H2(Ω)N )∩
H1(0, T ;H) to the Stokes system

⎧
⎪⎪⎨

⎪⎪⎩

ut − Δu+ ∇p = F in Q,
∇ · u = 0 in Q,
u = 0 on Σ,
u(0) = 0 in Ω,

for some p ∈ L2(0, T ;H1(Ω)), and there exists a constant C > 0 depending only on Ω such that

‖u‖2
L2(0,T ;H2(Ω)N ) + ‖u‖2

H1(0,T ;L2(Ω)N ) ≤ C‖F‖2
L2(Q)N . (2.10)

Furthermore, if F ∈ L2(0, T ;H2(Ω)N ) ∩H1(0, T ;L2(Ω)N ), then
u ∈ L2(0, T ;H4(Ω)N ) ∩H1(0, T ;H2(Ω)N ) and there exists a constant C > 0 depending only on Ω such
that

‖u‖2
L2(0,T ;H4(Ω)N ) + ‖u‖2

H1(0,T ;H2(Ω)N ) ≤ C(‖F‖2
L2(0,T ;H2(Ω)N ) + ‖F‖2

H1(0,T ;L2(Ω)N )). (2.11)

2.1. Proof of Proposition 2.1

Without any lack of generality, we treat the case of N = 2 and i = 2. The arguments can be easily
extended to the general case. We follow the ideas of [2]. In that paper, the arguments are based on the
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fact that Δπ = 0, which is not the case here [recall that π appears in (2.4)]. For this reason, let us first
introduce (w, q) and (z, r), the solutions of the following systems:

⎧
⎪⎪⎨

⎪⎪⎩

−wt − Δw + ∇q = ρg in Q,
∇ · w = 0 in Q,
w = 0 on Σ,
w(T ) = 0 in Ω,

(2.12)

and
⎧
⎪⎪⎨

⎪⎪⎩

−zt − Δz + ∇r = −ρ′ϕ in Q,
∇ · z = 0 in Q,
z = 0 on Σ,
z(T ) = 0 in Ω,

(2.13)

where ρ(t) = e− 3
2 sα∗

. Adding (2.12) and (2.13), we see that (w + z, q + r) solves the same system as
(ρϕ, ρπ), where (ϕ, π) is the solution to (2.4). By uniqueness of the Stokes system we have

ρϕ = w + z and ρπ = q + r. (2.14)

For system (2.12) we will use the regularity estimate (2.10), namely

‖w‖2
L2(0,T ;H2(Ω)2) + ‖w‖2

H1(0,T ;L2(Ω)2) ≤ C‖ρg‖2
L2(Q)2 , (2.15)

and for system (2.13) we will use the ideas of [2]. Using the divergence free condition on the equation of
(2.13), we see that

Δr = 0 in Q.

Then, we apply the operator ∇Δ = (∂1Δ, ∂2Δ) to the equation satisfied by z1 and we denote ψ := ∇Δz1.
We then have

−ψt − Δψ = −∇(Δ(ρ′ϕ1)) in Q.

We apply Lemma 2.2 to this equation and we obtain

I(s;ψ) :=
1
s

∫∫

Q

e−2sα 1
ξ
|∇ψ|2dx dt+ s

∫∫

Q

e−2sαξ|ψ|2dx dt

≤ C

(

s− 1
2 ‖e−sαξ− 1

4ψ‖2

H
1
4 , 1

2 (Σ)2
+ s− 1

2 ‖e−sαξ− 1
8ψ‖2

L2(Σ)2

+
∫∫

Q

e−2sα|ρ′|2|Δϕ1|2dx dt+ s

T∫

0

∫

ω0

e−2sαξ|ψ|2dx dt
⎞

⎠ , (2.16)

for every λ ≥ λ̂0 and s ≥ ŝ.
We divide the rest of the proof in several steps:

• In Step 1, using Lemmas 2.3 and 2.5, we estimate global integrals of z1 and z2 by the left-hand side
of (2.16).

• In Step 2, we deal with the boundary terms in (2.16).
• In Step 3, we estimate all the local terms by a local term of ϕ1 and ε I(s;ϕ) to conclude the proof.

Now, let us choose λ0 = max{λ̂0, λ̂1, λ̂2} so that Lemmas 2.3 and 2.5 can be applied and fix λ ≥ λ0.
In the following, C will denote a generic constant depending on Ω, ω and λ.
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Step 1. Estimate of z1. We use Lemma 2.3 with u = Δz1:

s3
∫∫

Q

e−2sαξ3|Δz1|2dx dt ≤ C

⎛

⎝s

∫∫

Q

e−2sαξ|ψ|2dx dt+ s3
T∫

0

∫

ω0

e−2sαξ3|Δz1|2dx dt
⎞

⎠ , (2.17)

for every s ≥ C.
Now, we apply Lemma 2.5 with u = z1 ∈ H1

0 (Ω)∩H2(Ω) and we get, for almost everywhere t ∈ (0, T ):

τ6

∫

Ω

e2τζζ6|z1|2dx+ τ4

∫

Ω

e2τζζ4|∇z1|2dx ≤ C

⎛

⎝τ3

∫

Ω

e2τζζ3|Δz1|2dx+ τ6

∫

ω0

e2τζζ6|z1|2dx
⎞

⎠ ,

for every τ ≥ C. Now we take

τ =
s

�8(t)

for s large enough so we have τ ≥ C. This yields to, for almost everywhere t ∈ (0, T ),

s6
∫

Ω

e2sξξ6|z1|2dx+ s4
∫

Ω

e2sξξ4|∇z1|2dx ≤ C

⎛

⎝s3
∫

Ω

e2sξξ3|Δz1|2dx+ s6
∫

ω0

e2sξξ6|z1|2dx
⎞

⎠ ,

for every s ≥ C. We multiply this inequality by

exp
(

−2s
e2λ‖η‖∞

�8(t)

)

,

and we integrate in (0, T ) to obtain

s6
∫∫

Q

e−2sαξ6|z1|2dx dt+ s4
∫∫

Q

e−2sαξ4|∇z1|2dx dt

≤ C

⎛

⎝s3
∫∫

Q

e−2sαξ3|Δz1|2dx dt+ s6
T∫

0

∫

ω0

e−2sαξ6|z1|2dx dt
⎞

⎠ ,

for every s ≥ C. Combining this with (2.17) we get the following estimate for z1:

s6
∫∫

Q

e−2sαξ6|z1|2dxdt+ s4
∫∫

Q

e−2sαξ4|∇z1|2dxdt

+s3
∫∫

Q

e−2sαξ3|Δz1|2dxdt ≤ C

⎛

⎝s

∫∫

Q

e−2sαξ|ψ|2dx dt

+s3
T∫

0

∫

ω0

e−2sαξ3|Δz1|2dx dt+ s6
T∫

0

∫

ω0

e−2sαξ6|z1|2dx dt
⎞

⎠ , (2.18)

for every s ≥ C.
Estimate of z2. Now we will estimate a term in z2 by the left-hand side of (2.18). From the divergence

free condition on z we find

s4
∫∫

Q

e−2sα∗
(ξ∗)4|∂2z2|2dx dt = s4

∫∫

Q

e−2sα∗
(ξ∗)4|∂1z1|2dx dt

≤ s4
∫∫

Q

e−2sαξ4|∇z1|2dx dt. (2.19)
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Since z2|∂Ω = 0 and Ω is bounded, we have that
∫

Ω

|z2|2dx ≤ C(Ω)
∫

Ω

|∂2z2|dx,

and because α∗ and ξ∗ do not depend on x, we also have

s4
∫∫

Q

e−2sα∗
(ξ∗)4|z2|2dx dt ≤ C(Ω)s4

∫∫

Q

e−2sα∗
(ξ∗)4|∂2z2|2dx dt.

Combining this with (2.19) we obtain

s4
∫∫

Q

e−2sα∗
(ξ∗)4|z2|2dx dt ≤ Cs4

∫∫

Q

e−2sαξ4|∇z1|2dx dt. (2.20)

Now, observe that by (2.14), (2.15) and the fact that s2e−2sα(ξ∗)9/4 is bounded we can estimate the
third term in the right-hand side of (2.16). Indeed,

∫∫

Q

e−2sα|ρ′|2|Δϕ1|2dx dt =
∫∫

Q

e−2sα|ρ′|2|ρ|−2|Δ(ρϕ1)|2dx dt

≤ C

⎛

⎝s2
∫∫

Q

e−2sα(ξ∗)9/4|Δw1|dx dt+ s2
∫∫

Q

e−2sα(ξ∗)9/4|Δz1|dx dt
⎞

⎠

≤ C

⎛

⎝‖ρg‖2
L2(Q)2 + s2

∫∫

Q

e−2sα(ξ∗)3|Δz1|dx dt
⎞

⎠ .

Putting together (2.16), (2.18), (2.20) and this last inequality we have for the moment

s6
∫∫

Q

e−2sαξ6|z1|2dxdt+ s4
∫∫

Q

e−2sα∗
(ξ∗)4|z2|2dxdt

+s3
∫∫

Q

e−2sαξ3|Δz1|2dxdt+ s

∫∫

Q

e−2sαξ|ψ|2dxdt+
1
s

∫∫

Q

e−2sα 1
ξ
|∇ψ|2dxdt

≤ C

⎛

⎝s− 1
2 ‖e−sαξ− 1

4ψ‖2

H
1
4 , 1

2 (Σ)2
+ s− 1

2 ‖e−sαξ− 1
8ψ‖2

L2(Σ)2 + ‖ρg‖2
L2(Q)2

+s

T∫

0

∫

ω0

e−2sαξ|ψ|2dx dt+ s3
T∫

0

∫

ω0

e−2sαξ3|Δz1|2dx dt+ s6
T∫

0

∫

ω0

e−2sαξ6|z1|2dx dt
⎞

⎠ , (2.21)

for every s ≥ C.

Step 2. In this step we deal with the boundary terms in (2.21).
First, we treat the second boundary term in (2.21). Notice that, since α and ξ coincide with α∗ and

ξ∗ respectively on Σ,

‖e−sα∗
ψ‖2

L2(Σ)2 ≤ C‖s 1
2 e−sα∗

(ξ∗)
1
2ψ‖L2(Q)2‖s− 1

2 e−sα∗
(ξ∗)− 1

2 ∇ψ‖L2(Q)2

≤ C

⎛

⎝s

∫∫

Q

e−2sα∗
ξ∗|ψ|2dx dt+

1
s

∫∫

Q

e−2sα∗ 1
ξ∗ |∇ψ|2dx dt

⎞

⎠ ,
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so ‖e−sα∗
ψ‖2

L2(Σ)2 is bounded by the left-hand side of (2.21). On the other hand,

s− 1
2 ‖e−sαξ− 1

8ψ‖2
L2(Σ)2 ≤ Cs− 1

2 ‖e−sαψ‖2
L2(Σ)2 ,

and we can absorb s− 1
2 ‖e−sαψ‖2

L2(Σ)2 by taking s large enough.
Now we treat the first boundary term in the right-hand side of (2.21). We will use regularity estimates

to prove that z1 multiplied by a certain weight function is regular enough. First, let us observe that from
(2.14) we readily have

s4
∫∫

Q

e−2sα∗
(ξ∗)4|ρ|2|ϕ|2dx dt ≤ 2s4

∫∫

Q

e−2sα∗
(ξ∗)4|w|2dx dt+ 2s4

∫∫

Q

e−2sα∗
(ξ∗)4|z|2dx dt.

Using the regularity estimate (2.15) for w we have

s4
∫∫

Q

e−2sα∗
(ξ∗)4|ρ|2|ϕ|2dx dt ≤ C

⎛

⎝‖ρg‖2
L2(Q)2 + s4

∫∫

Q

e−2sα∗
(ξ∗)4|z|2dx dt

⎞

⎠ , (2.22)

thus the term ‖s2e−sα∗
(ξ∗)2ρϕ‖2

L2(Q)2 is bounded by the left-hand side of (2.21) and ‖ρg‖2
L2(Q)2 .

We define now

z̃ := se−sα∗
(ξ∗)7/8z, r̃ := se−sα∗

(ξ∗)7/8r.

From (2.13) we see that (z̃, r̃) is the solution of the Stokes system:
⎧
⎪⎪⎨

⎪⎪⎩

−z̃t − Δz̃ + ∇r̃ = −se−sα∗
(ξ∗)7/8ρ′ϕ− (se−sα∗

(ξ∗)7/8)tz in Q,
∇ · z̃ = 0 in Q,
z̃ = 0 on Σ,
z̃(T ) = 0 in Ω.

Taking into account that

|α∗
t | ≤ C(ξ∗)9/8, |ρ′| ≤ Csρ(ξ∗)9/8

and the regularity estimate (2.10) we have

‖z̃‖2
L2(0,T ;H2(Ω)2)∩H1(0,T ;L2(Ω)2) ≤ C

(
‖s2e−sα∗

(ξ∗)2ρϕ‖2
L2(Q)2 + ‖s2e−sα∗

(ξ∗)2z‖2
L2(Q)2

)
,

thus, from (2.22), ‖se−sα∗
(ξ∗)7/8z‖2

L2(0,T ;H2(Ω)2)∩H1(0,T ;L2(Ω)2) is bounded by the left-hand side of (2.21)
and ‖ρg‖2

L2(Q)2 . From (2.14), (2.15) and this last inequality we have that

‖se−sα∗
(ξ∗)7/8ρϕ‖2

L2(0,T ;H2(Ω)2)∩H1(0,T ;L2(Ω)2) ≤ C
(
‖ρg‖2

L2(Q)2 + ‖z̃‖2
L2(0,T ;H2(Ω)2)∩H1(0,T ;L2(Ω)2)

)
,

and thus ‖se−sα∗
(ξ∗)7/8ρϕ‖2

L2(0,T ;H2(Ω)2)∩H1(0,T ;L2(Ω)2) is bounded by the left-hand side of (2.21) and
‖ρg‖2

L2(Q)2 .
Next, let

ẑ := e−sα∗
(ξ∗)−1/4z, r̂ := e−sα∗

(ξ∗)−1/4r.

From (2.13), (ẑ, r̂) is the solution of the Stokes system:
⎧
⎪⎪⎨

⎪⎪⎩

−ẑt − Δẑ + ∇r̂ = −e−sα∗
(ξ∗)−1/4ρ′ϕ− (e−sα∗

(ξ∗)−1/4)tz in Q,
∇ · ẑ = 0 in Q,
ẑ = 0 on Σ,
ẑ(T ) = 0 in Ω.
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From the previous estimates, it is not difficult to see that the right-hand side of this system is in
L2(0, T ;H2(Ω)2) ∩H1(0, T ;L2(Ω)2), and thus, using the regularity estimate (2.11), we have

‖ẑ‖2
L2(0,T ;H4(Ω)2)∩H1(0,T ;H2(Ω)2) ≤ C

(
‖se−sα∗

(ξ∗)7/8ρϕ‖2
L2(0,T ;H2(Ω)2)∩H1(0,T ;L2(Ω)2)

+‖se−sα∗
(ξ∗)7/8z‖2

L2(0,T ;H2(Ω)2)∩H1(0,T ;L2(Ω)2)

)
.

In particular, e−sα∗
(ξ∗)−1/4ψ ∈ L2(0, T ;H1(Ω)2) ∩H1(0, T ;H−1(Ω)2) (recall that ψ = ∇Δz1) and

‖e−sα∗
(ξ∗)−1/4ψ‖2

L2(0,T ;H1(Ω)2) and ‖e−sα∗
(ξ∗)−1/4ψ‖2

H1(0,T ;H−1(Ω)2) (2.23)

are bounded by the left-hand side of (2.21) and ‖ρg‖2
L2(Q)2 .

To end this step, we use the following trace inequality

s−1/2‖e−sαξ− 1
4ψ‖2

H
1
4 , 1

2 (Σ)2
= s−1/2‖e−sα∗

(ξ∗)− 1
4ψ‖2

H
1
4 , 1

2 (Σ)2

≤ C s−1/2
(
‖e−sα∗

(ξ∗)−1/4ψ‖2
L2(0,T ;H1(Ω)2)

+‖e−sα∗
(ξ∗)−1/4ψ‖2

H1(0,T ;H−1(Ω)2)

)
.

By taking s large enough in (2.21), the boundary term

s−1/2‖e−sαξ− 1
4ψ‖2

H
1
4 , 1

2 (Σ)2

can be absorbed by the terms in (2.23) and step 2 is finished.
Thus, at this point we have

s4
∫∫

Q

e−2sα∗
(ξ∗)4|ρ|2|ϕ|2dx dt+ s3

∫∫

Q

e−2sαξ3|Δz1|2dx dt

+s
∫∫

Q

e−2sαξ|∇Δz1|2dx dt+
1
s

∫∫

Q

e−2sα 1
ξ
|Δ2z1|2dx dt

≤ C

⎛

⎝‖ρg‖2
L2(Q)2 + s6

T∫

0

∫

ω0

e−2sαξ6|z1|2dx dt

+s

T∫

0

∫

ω0

e−2sαξ|∇Δz1|2dx dt+ s3
T∫

0

∫

ω0

e−2sαξ3|Δz1|2dx dt
⎞

⎠ , (2.24)

for every s ≥ C.
Step 3. In this step we estimate the two last local terms in the right-hand side of (2.24) in terms of

local terms of z1 and the left-hand side of (2.24) multiplied by small constants. Finally, we make the final
arrangements to obtain (2.5).

We start with the term ∇Δz1 and we follow a standard approach. Let ω1 be an open subset such that
ω0 � ω1 � ω and let ρ1 ∈ C2

c (ω1) with ρ1 ≡ 1 in ω0 and ρ1 ≥ 0. Then, by integrating by parts we get

s

T∫

0

∫

ω0

e−2sαξ|∇Δz1|2dx dt ≤ s

T∫

0

∫

ω1

ρ1e
−2sαξ|∇Δz1|2dx dt

= −s
T∫

0

∫

ω1

ρ1e
−2sαξΔ2z1Δz1dx dt+

s

2

T∫

0

∫

ω1

Δ(ρ1e
−2sαξ)|Δz1|2dx dt.

Using Cauchy–Schwarz’s inequality for the first term and

|Δ(ρ1e
−2sαξ)| ≤ Cs2e−2sαξ3, s ≥ C
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for the second one, we obtain for every ε > 0

s

T∫

0

∫

ω0

e−2sαξ|∇Δz1|2dx dt ≤ ε

s

T∫

0

∫

ω1

e−2sα 1
ξ
|Δ2z1|2dx dt+ C(ε)s3

T∫

0

∫

ω1

e−2sαξ3|Δz1|2dx dt,

for every s ≥ C.
Let us now estimate Δz1. Let ρ2 ∈ C2

c (ω) with ρ2 ≡ 1 in ω1 and ρ2 ≥ 0. Then, by integrating by parts
we get

s3
T∫

0

∫

ω1

e−2sαξ3|Δz1|2dx dt ≤ s3
T∫

0

∫

ω

ρ2e
−2sαξ3|Δz1|2dx dt

= 2s3
T∫

0

∫

ω

∇(ρ2e
−2sαξ3)∇Δz1 · z1dx dt+ s3

T∫

0

∫

ω

Δ(ρ2e
−2sαξ3)Δz1 · z1dx dt

+s3
T∫

0

∫

ω

ρ2e
−2sαξ3Δ2z1 · z1dx dt.

Using

|∇(ρ2e
−2sαξ3)| ≤ Cse−2sαξ4, s ≥ C,

for the first term in the right-hand side of this last inequality,

|Δ(ρ2s
3e−2sαξ3)| ≤ Cs5e−2sαξ5, s ≥ C,

for the second one and Cauchy–Schwarz’s inequality we obtain for every ε > 0

s3
T∫

0

∫

ω1

e−2sαξ3|Δz1|2dx dt ≤ ε

⎛

⎝
1
s

T∫

0

∫

ω

e−2sα 1
ξ
|Δ2z1|2dx dt+ s

T∫

0

∫

ω

e−2sαξ|∇Δz1|2dx dt

+s3
T∫

0

∫

ω

e−2sαξ3|Δz1|2dx dt
⎞

⎠ + C(ε)s7
T∫

0

∫

ω

e−2sαξ7|z1|2dx dt,

for every s ≥ C.
Finally, from (2.14) and (2.15) we readily obtain

s7
T∫

0

∫

ω

e−2sαξ7|z1|2dx dt ≤ 2s7
T∫

0

∫

ω

e−2sαξ7|ρ|2|ϕ1|2dx dt+ 2s7
T∫

0

∫

ω

e−2sαξ7|w1|2dx dt

≤ 2s7
T∫

0

∫

ω

e−2sαξ7|ρ|2|ϕ1|2dx dt+ C‖ρg‖2
L2(Q)2 .

This concludes the proof of Proposition 2.1.
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3. Null Controllability of the Linear System

Here we are concerned with the null controllability of the system
⎧
⎪⎪⎨

⎪⎪⎩

yt − Δy + ∇p = f + v1ω in Q,
∇ · y = 0 in Q,
y = 0 on Σ,
y(0) = y0 in Ω,

(3.1)

where y0 ∈ V, f is in an appropriate weighted space and the control v ∈ L2(ω × (0, T ))N is such that
vi = 0 for some i ∈ {1, . . . , N}.

Before dealing with the null controllability of (3.1), we will deduce a new Carleman inequality with
weights not vanishing at t = 0. To this end, let us introduce the following weight functions:

β(x, t) =
e2λ‖η‖∞ − eλη(x)

�̃8(t)
, γ(x, t) =

eλη(x)

�̃8(t)
,

β∗(t) = max
x∈Ω

β(x, t), γ∗(t) = min
x∈Ω

γ(x, t),

β̂(t) = min
x∈Ω

β(x, t), γ̂(t) = max
x∈Ω

γ(x, t), (3.2)

where

�̃(t) =
{‖�‖∞ 0 ≤ t ≤ T/2,
�(t) T/2 < t ≤ T.

Lemma 3.1. Let i ∈ {1, . . . , N} and let s and λ be like in Proposition 2.1. Then, there exists a constant
C > 0 (depending on s and λ) such that every solution ϕ of (2.4) satisfies:

∫∫

Q

e−5sβ∗
(γ∗)4|ϕ|2dx dt+ ‖ϕ(0)‖2

L2(Ω)N

≤ C

⎛

⎝

∫∫

Q

e−3sβ∗ |g|2dx dt+
N∑

j=1,j �=i

T∫

0

∫

ω

e−2sβ̂−3sβ∗
γ̂7|ϕj |2dx dt

⎞

⎠ . (3.3)

Proof. We start by an a priori estimate for the Stokes system (2.4). To do this, we introduce a function
ν ∈ C1([0, T ]) such that

ν ≡ 1 in [0, T/2], ν ≡ 0 in [3T/4, T ].

We easily see that (νϕ, νπ) satisfies
⎧
⎪⎪⎨

⎪⎪⎩

−(νϕ)t − Δ(νϕ) + ∇(νϕ) = νg − ν′ϕ in Q,
∇ · (νπ) = 0 in Q,
(νϕ) = 0 on Σ,
(νϕ)(T ) = 0 in Ω,

thus we have the energy estimate

‖νϕ‖2
L2(0,T ;H1(Ω)N ) + ‖νϕ‖2

L∞(0,T ;L2(Ω)N ) ≤ C(‖νg‖2
L2(Q)N + ‖ν′ϕ‖2

L2(Q)N ),

from which we readily obtain

‖ϕ‖2
L2(0,T/2;L2(Ω)N ) + ‖ϕ(0)‖2

L2(Ω)N ≤ C(‖g‖2
L2(0,3T/4;L2(Ω)N ) + ‖ϕ‖2

L2(T/2,3T/4;L2(Ω)N )).

From this last inequality, and the fact that

e−3sβ∗ ≥ C > 0, ∀t ∈ [0, 3T/4] and e−5sα∗
(ξ∗)4 ≥ C > 0, ∀t ∈ [T/2, 3T/4]
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we have
T/2∫

0

∫

Ω

e−5sβ∗
(γ∗)4|ϕ|2dx dt+‖ϕ(0)‖2

L2(Ω)N ≤ C

⎛

⎜
⎝

3T/4∫

0

∫

Ω

e−3sβ∗ |g|2dx dt+
3T/4∫

T/2

∫

Ω

e−5sα∗
(ξ∗)4|ϕ|2dx dt

⎞

⎟
⎠.

(3.4)

Note that, since α = β in Ω × (T/2, T ), we have:
T∫

T/2

∫

Ω

e−5sβ∗
(γ∗)4|ϕ|2dx dt =

T∫

T/2

∫

Ω

e−5sα∗
(ξ∗)4|ϕ|2dx dt

≤ C

∫∫

Q

e−5sα∗
(ξ∗)4|ϕ|2dx dt,

and by the Carleman inequality of Proposition 2.1
T∫

T/2

∫

Ω

e−5sβ∗
(γ∗)4|ϕ|2dx dt ≤ C

⎛

⎝

∫∫

Q

e−3sα∗ |g|2dx dt+
N∑

j=1,j �=i

T∫

0

∫

ω

e−2sα̂−3sα∗
(ξ̂)7|ϕj |2dx dt

⎞

⎠ .

Since

e−3sβ∗
, e−2sβ̂−3sβ∗

γ̂7 ≥ C > 0,∀t ∈ [0, T/2],

we can readily get
T∫

T/2

∫

Ω

e−5sβ∗
(γ∗)4|ϕ|2dx dt ≤ C

⎛

⎝

∫∫

Q

e−3sβ∗ |g|2dx dt+
N∑

j=1,j �=i

T∫

0

∫

ω

e−2sβ̂−3sβ∗
γ̂7|ϕj |2dx dt

⎞

⎠ ,

which, together with (3.4), yields (3.3).

Now we will prove the null controllability of (3.1). Actually, we will prove the existence of a solution
for this problem in an appropriate weighted space.

Let us set

Ly = yt − Δy

and let us introduce the space, for N = 2 or 3 and i ∈ {1, . . . , N},

Ei
N = {(y, p, v) : e3/2sβ∗

y, esβ̂+3/2sβ∗
γ̂−7/2 v1ω ∈ L2(Q)N , vi ≡ 0,

e3/2sβ∗
(γ∗)−9/8y ∈ L2(0, T ;H2(Ω)N ) ∩ L∞(0, T ;V ),

e5/2sβ∗
(γ∗)−2(Ly + ∇p− v1ω) ∈ L2(Q)N }.

It is clear that Ei
N is a Banach space for the following norm:

‖(y, p, v)‖Ei
N

=
(
‖e3/2sβ∗

y‖2
L2(Q)N + ‖esβ̂+3/2sβ∗

γ̂−7/2 v1ω‖2
L2(Q)N

+‖e3/2sβ∗
(γ∗)−9/8 y‖2

L2(0,T ;H2(Ω)N ) + ‖e3/2sβ∗
(γ∗)−9/8y‖2

L∞(0,T ;V )

+‖e5/2sβ∗
(γ∗)−2(Ly + ∇p− v1ω)‖2

L2(Q)N

)1/2

Remark 3.2. Observe in particular that (y, p, v) ∈ Ei
N implies y(T ) = 0 in Ω. Moreover, the functions

belonging to this space possesses the interesting following property:

e5/2sβ∗
(γ∗)−2(y · ∇)y ∈ L2(Q)N .
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Proposition 3.3. Let i ∈ {1, . . . , N}. Assume that

y0 ∈ V and e5/2sβ∗
(γ∗)−2f ∈ L2(Q)N .

Then, we can find a control v such that the associated solution (y, p) to (3.1) satisfies (y, p, v) ∈ Ei
N . In

particular, vi ≡ 0 and y(T ) = 0.

Proof. The proof of this proposition is very similar to the one of Proposition 2 in [3] and Proposition 1
in [4], so we will just give the main ideas.

Following the arguments in [5] and [6], we introduce the space

P0 = { (χ, σ) ∈ C2(Q)N+1 : ∇ · χ = 0, χ = 0 on Σ }
and we consider the following variational problem:

a((χ̂, σ̂), (χ, σ)) = 〈G, (χ, σ)〉 for all (χ, σ) ∈ P0, (3.5)

where we have used the notations

a((χ̂, σ̂), (χ, σ)) =
∫∫

Q

e−3sβ∗
(L∗χ̂+ ∇σ̂) · (L∗χ+ ∇σ) dx dt

+
N∑

j=1,j �=i

T∫

0

∫

ω

e−2sβ̂−3sβ∗
γ̂7 χ̂j χj dx dt,

〈G, (χ, σ)〉 =
∫∫

Q

f · χdx dt+
∫

Ω

y0 · χ(0) dx

and L∗ is the adjoint operator of L, i.e.

L∗χ = −χt − Δχ.

It is clear that a(· , ·) : P0 × P0 
→ R is a symmetric, definite positive bilinear form on P0. We
denote by P the completion of P0 for the norm induced by a(· , ·). Then a(· , ·) is well-defined, continuous
and again definite positive on P . Furthermore, in view of the Carleman estimate (3.3), the linear form
(χ, σ) 
→ 〈G, (χ, σ)〉 is well-defined and continuous on P . Hence, from Lax–Milgram’s lemma, we deduce
that the variational problem

{
a((χ̂, σ̂), (χ, σ)) = 〈G, (χ, σ)〉
for all (χ, σ) ∈ P, (χ̂, σ̂) ∈ P,

(3.6)

possesses exactly one solution (χ̂, σ̂).
Let ŷ and v̂ be given by

{
ŷ = e−3sβ∗

(L∗χ̂+ ∇σ̂), in Q,

v̂j = −e−2sβ̂−3sβ∗
γ̂7 χ̂j (j �= i), v̂i ≡ 0 in ω × (0, T ).

Then, it is readily seen that they satisfy

∫∫

Q

e3sβ∗ |ŷ|2dxdt+
N∑

j=1,j �=i

T∫

0

∫

ω

e2sβ̂+3sβ∗
γ̂−7|v̂j |2dxdt = a((χ̂, σ̂), (χ̂, σ̂)) < ∞

and also that ŷ is, together with some pressure p̂, the weak solution (belonging to L2(0, T ;V ) ∩ L∞

(0, T ;H)) of the Stokes system (3.1) for v = v̂.
It only remains to check that

e3/2sβ∗
(γ∗)−9/8ŷ ∈ L2(0, T ;H2(Ω)N ) ∩ L∞(0, T ;V ).
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To this end, we define the functions

y∗ = e3/2sβ∗
(γ∗)−9/8 ŷ, p∗ = e3/2sβ∗

(γ∗)−9/8 p̂

and

f∗ = e3/2sβ∗
(γ∗)−9/8(f + v̂1ω).

Then (y∗, p∗) satisfies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ly∗ + ∇p∗ = f∗ + (e3/2sβ∗
(γ∗)−9/8)t ŷ in Q,

∇ · y∗ = 0 in Q,
y∗ = 0 on Σ,
y∗(0) = e3/2sβ∗(0)(γ∗(0))−9/8y0 in Ω.

(3.7)

From the fact that f∗ + (e3/2sβ∗
(γ∗)−9/8)t ŷ ∈ L2(Q)N and y0 ∈ V , we have indeed

y∗ ∈ L2(0, T ;H2(Ω)N ) ∩ L∞(0, T ;V )

[see (2.10)]. This ends the sketch of the proof of Proposition 3.3.

4. Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1 using similar arguments to those in [6] (see also [3] and
[4]). The result of null controllability for the linear system (3.1) given by Proposition 3.3 will allow us to
apply an inverse mapping theorem, namely (see [1]),

Theorem 4.1. Let B1 and B2 be two Banach spaces and let A : B1 → B2 satisfy A ∈ C1(B1;B2). Assume
that b1 ∈ B1,A(b1) = b2 and that A′(b1) : B1 → B2 is surjective. Then, there exists δ > 0 such that, for
every b′ ∈ B2 satisfying ‖b′ − b2‖B2 < δ, there exists a solution of the equation

A(b) = b′, b ∈ B1.

We apply this theorem setting, for some given i ∈ {1, . . . , N},

B1 = Ei
N ,

B2 = L2(e5/2sβ∗
(γ∗)−2(0, T );L2(Ω)N ) × V

and the operator

A(y, p, v) = (Ly + (y · ∇)y + ∇p− v1ω, y(0))

for (y, p, v) ∈ Ei
N .

In order to apply Theorem 4.1, it remains to check that the operator A is of class C1(B1;B2). Indeed,
notice that all the terms in A are linear, except for (y · ∇)y. We will prove that the bilinear operator

((y1, p1, v1), (y2, p2, v2)) → (y1 · ∇)y2

is continuous from B1×B1 to L2(e5/2sβ∗
(γ∗)−2(0, T );L2(Ω)N ). To do this, notice that e3/2sβ∗

(γ∗)−9/8y ∈
L2(0, T ;H2(Ω)N ) ∩ L∞(0, T ;V ) for any (y, p, v) ∈ B1, so we have

e3/2sβ∗
(γ∗)−9/8y ∈ L2(0, T ;L∞(Ω)N )

and

∇(e3/2sβ∗
(γ∗)−9/8y) ∈ L∞(0, T ;L2(Ω)N ).

Consequently, we obtain

‖e5/2sβ∗
(γ∗)−2(y1 · ∇)y2‖L2(Q)N ≤ C‖(e3/2sβ∗

(γ∗)−9/8 y1 · ∇)e3/2sβ∗
(γ∗)−9/8 y2‖L2(Q)N

≤ C‖e3/2sβ∗
(γ∗)−9/8y1‖L2(0,T ;L∞(Ω)N ) ‖e3/2sβ∗

(γ∗)−9/8y2‖L∞(0,T ;H1(Ω)N ).
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Notice that A′(0, 0, 0) : B1 → B2 is given by

A′(0, 0, 0)(y, p, v) = (Ly + ∇p, y(0)), for all (y, p, v) ∈ B1,

so this functional is surjective in view of the null controllability result for the linear system (3.1) given
by Proposition 3.3.

We are now able to apply Theorem 4.1 for b1 = (0, 0, 0) and b2 = (0, 0). In particular, this gives the
existence of a positive number δ such that, if ‖y(0)‖V ≤ δ, then we can find a control v satisfying vi ≡ 0,
for some given i ∈ {1, . . . , N}, such that the associated solution (y, p) to (1.1) satisfies y(T ) = 0 in Ω.

This concludes the proof of Theorem 1.1.
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