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In this paper we consider a linear KdV equation posed on a bounded interval. We 
study the behavior of the cost of null controllability when two boundary controls 
are employed. By means of suitable Carleman inequalities and a new exponential 
dissipation estimate, we prove that uniform null controllability with respect to the 
dispersion coefficient holds, contrary to the case when one control is used at the left 
end-point of the interval.
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1. Introduction

Let T > 0, L > 0 and Q := (0, T ) × (0, L). We consider the following linear Korteweg–de Vries (KdV) 
equation:

⎧⎪⎨
⎪⎩

yt + εyxxx −Myx = 0 in Q,

y|x=0 = v0, yx|x=L = v1, yxx|x=L = v2 in (0, T ),
y|t=0 = y0 in (0, L),

(1.1)

where ε > 0 is the dispersion coefficient, M ∈ R is the transport coefficient, y0 ∈ L2(0, L) is the initial 
condition and v0, v1 and v2 stand for the controls.

The control of the KdV equation has captured the attention of several researchers over the last twenty 
years. Most results are related to the boundary conditions

y|x=0 = u0, y|x=L = u1, yx|x=L = u2. (1.2)
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We refer to the recent survey [2] for a complete compendium of controllability and stabilization results for 
(1.2). See also [17,19,18,3,13].

For the boundary conditions in (1.1), introduced by T. Colin and J.-M. Ghidaglia in [6,5], the first 
controllability result is found in [14], where the null controllability is proved with M = −1 and v1 = v2 = 0. 
In [4], the authors proved exact controllability results for the remaining cases of active controls.

We are interested in the uniform null controllability of (1.1). More precisely, we ask if, given an initial 
condition y0 and a time T > 0, is it possible to drive the solution of (1.1) to the rest at t = T with controls 
uniformly bounded with respect to ε as ε → 0?

For boundary conditions (1.2), positive results are proved for the case of vanishing diffusion (μyxx with 
small μ > 0) [7] and vanishing dispersion [11,12] for large control times T . For (1.1), this question has a 
negative answer in the case v1 ≡ v2 ≡ 0. Indeed, in [1], we proved that there exist initial conditions such 
that the L2-norm of any control v0 driving the solution of (1.1) to zero is exponentially increasing as ε goes 
to zero. Furthermore, this holds for any T > 0.

This paper is a continuation of [1]. We are interested in investigating the uniform null controllability in 
two cases:

• Case 1: v1 ≡ 0.
• Case 2: v0 ≡ 0.

Indeed, we are able to obtain uniform null controllability of (1.1) as long as we control with v2 the 
boundary condition yxx|x=L and the initial condition y0 ∈ L2(0, L) satisfies, for some L0 ∈ (0, L),

y0 = 0 in (L0, L). (1.3)

The result corresponding to the first case is the following.

Theorem 1.1. Let L, ε, M > 0, L0 ∈ (0, L) and set v1 ≡ 0. There exists K > 1, independent of ε and M , 
such that for every T ≥ K/M and every y0 ∈ L2(0, L) satisfying (1.3), there are controls vε0 and vε2 belonging 
to L2(0, T ) such that y|t=T = 0 in (0, L) and

‖vε0‖2
L2(0,T ) + ‖vε2‖2

L2(0,T ) ≤ C̄ exp
(
− CM1/2

ε1/2

)
‖y0‖2

L2(0,L) (1.4)

where the constant C̄ depends at most polynomially on ε−1, ε, M−1 and M , and C only depends on L
and L0.

A direct consequence of Theorem 1.1 is that the cost of null controllability is uniformly bounded with 
respect to ε. Furthermore, it goes to zero as ε vanishes. Indeed, we define this cost as

Cε
0 := sup

y0∈L2(0,L)
(1.3),y0 �=0

min
vε
0 ,v

ε
2∈L2(0,T )

y|t=T =0

‖vε0‖2
L2(0,T ) + ‖vε2‖2

L2(0,T )

‖y0‖2
L2(0,L)

. (1.5)

Notice that Cε
0 is the best constant such that (1.4) holds (see, for instance, [8]). With this notation, we 

deduce from Theorem 1.1 the following result.

Corollary 1.2. Let L, M > 0, L0 ∈ (0, L) and T > 0 as in Theorem 1.1. Then,

lim
ε→0

Cε
0 = 0.



924 N. Carreño, S. Guerrero / J. Math. Anal. Appl. 457 (2018) 922–943
Some remarks are in order. Notice that in [1], it is shown that, when only v0 is acting, the cost explodes 
as ε → 0, even if T is arbitrarily large. Although that result is proved for a larger class of initial conditions, 
Corollary 1.2 says that the controls can be uniformly bounded with respect to ε if a control on yxx|x=L is 
permitted.

Concerning the second case, we are able to prove the following

Theorem 1.3. Let L, ε, M > 0, L0 ∈ (0, L) and set v0 ≡ 0. There exist C > 0 and K > 1, both independent 
of ε and M such that for every T ≥ K/M and every y0 ∈ L2(0, L) satisfying (1.3), there are controls vε1
and vε2 belonging to L2(0, T ) such that y|t=T = 0 in (0, L) and

‖vε1‖2
L2(0,T ) + ‖vε2‖2

L2(0,T ) ≤ CM exp
(
− CM1/2

ε1/2

)
‖y0‖2

L2(0,L). (1.6)

Similarly as before, the cost of null controllability in this case is defined as

Cε
1 := sup

y0∈L2(0,L)
(1.3),y0 �=0

min
vε
1 ,v

ε
2∈L2(0,T )

y|t=T =0

‖vε1‖2
L2(0,T ) + ‖vε2‖2

L2(0,T )

‖y0‖2
L2(0,L)

(1.7)

and we deduce from (1.6) the following asymptotic behavior.

Corollary 1.4. Let L, M > 0, L0 ∈ (0, L) and T > 0 as in Theorem 1.3. Then,

lim
ε→0

Cε
1 = 0.

From [12], it is not hard to convince ourselves that controlling from the left extreme of the interval (0, L)
is not so different than controlling from the right when using (1.2). In fact, the uniform null controllability 
result proved in [12, Theorem 1.1] will hold if u1 and u2 are active in (1.2) and u0 = 0 (see also [7], where 
the same happens for vanishing diffusion). For the boundary conditions in (1.1), we see from Corollary 1.4
that the behavior of the cost when we control from the right-end of (0, L) is dramatically different than 
controlling from the left (see [1, Corollary 1.4]).

It comes natural to ask if the results of Theorems 1.1 and 1.3 would hold if v2 = 0, but v0 and v1 are 
active. The approach followed in this article does not allow us to give a positive nor negative answer to this 
question. However, given that what enables to obtain these results is to use v2, and in view of the negative 
result from [1], we conjecture that the cost in this case cannot be uniformly bounded. Furthermore, it should 
explode as the dispersion coefficient vanishes. This case remains, for the time being, an open problem.

To prove Theorems 1.1 and 1.3, we follow the ideas of [7,12]. It consists in two main steps. First, we 
prove an observability inequality for the solutions of the adjoint equation (see (3.1) below). This is obtained 
by means of Carleman estimates. Second, we prove an exponential dissipation estimate that holds for 
large times. From the results in [1], an estimate like the one proved in [12] cannot hold. Nevertheless, the 
fact that we allow v2 to act on the equation helps to obtain a different kind of dissipation estimate that 
allows to counteract the constant coming from the Carleman estimate for large times (see Section 3 for 
details).

This work is organized as follows. In Section 2, we justify the existence and uniqueness of solutions. 
Then, in Section 3 we prove a new exponential dissipation estimate for the solutions of the adjoint equation 
of (1.1). The proofs of Theorems 1.1 and 1.3 can be found in Sections 4 and 5, respectively. Finally, in 
Appendix A, we prove a new Carleman estimate for KdV.
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2. On the existence and uniqueness of solutions of (1.1)

The well-posedness of the KdV equation has been the object of several works. Most results are related 
for the non-linear version

yt + yxxx + yyx = 0.

For well-posedness results concerning the boundary conditions in (1.1), we refer to [15] and the references 
therein.

A common strategy to prove existence is by means of continuous semi-groups which requires the linear 
operator of the equation to be dissipative. Notice that this is not the case for (1.1) when M > 0. It is not 
our intention here to give sharp regularity, but to justify the existence and uniqueness of solutions of (1.1)
in this case.

Proposition 2.1. Let ε, T, M > 0, v0, v1, v2 ∈ L2(0, T ) and y0 ∈ L2(0, L). Then, there exists a unique solution 
y ∈ L2(0, T ; H−2(0, L)) ∩ C0([0, T ]; H−5(0, L)) of (1.1).

Proof. We start by lifting the boundary conditions. Let ε and M be arbitrary positive constants. We consider 
the function

z(t, x) =
tˆ

0

y(s, x) ds− (L− x)3

L3

tˆ

0

v0(s) ds− x

tˆ

0

v1(s) ds + x(2L− x)
2

tˆ

0

v2(s) ds

where y is supposed to satisfy (1.1) with v0, v1, v2 ∈ L2(0, T ). It is clear then that z satisfies the equation⎧⎪⎨
⎪⎩

zt + εzxxx −Mzx = f in Q,

z|x=0 = 0, zx|x=L = 0, zxx|x=L = 0 in (0, T ),
z|t=0 = 0 in (0, L),

(2.1)

with

f(t, x) := − (L− x)3

L3 v0(t) − xv1(t) + x(2L− x)
2 v2(t) +

(
6ε
L3 − 3M(L− x)2

L3

) tˆ

0

v0(s) dt

+ M

tˆ

0

v1(s) ds−M(L− x)
tˆ

0

v2(s) ds + y0.

(2.2)

Then, if we prove the existence (and uniqueness) of solution z of (2.1), we would have proved the existence 
(and uniqueness) of a solution of (1.1) by simply defining

y(t, x) := zt(t, x) + (L− x)3

L3 v0(t) + xv1(t) −
x(2L− x)

2 v2(t). (2.3)

The following lemma was proved in [1].

Lemma 2.2. Let ε, T, M > 0 and f ∈ L2(Q). Then, there exists a unique solution z of (2.1) which belongs 
to L2(0, T ; H1(0, L)) ∩ L∞(0, T ; L2(0, L)).

Remark 2.3. The notion of solution in Lemma 2.2 is the one from [17], that is, z verifies equation (2.1) in 
D′(0, T ; H−2). The same notion of (mild or weak) solution is considered for equation (1.1).
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Since f defined in (2.2) clearly belongs to L2(Q), the existence and uniqueness of z solution of 
(2.1) is ensured from Lemma 2.2. Now, using the equation satisfied by z and (2.3), we deduce that 
y ∈ L2(0, T ; H−2) ∩H1(0, T ; H−5) satisfies (1.1) (in the sense of Remark 2.3). This concludes the proof of 
Proposition 2.1. �
3. An exponential dissipation estimate

This section is devoted to the proof of an exponential dissipation estimate for the solutions of the adjoint 
equation of (1.1)

⎧⎪⎨
⎪⎩

−ϕt − εϕxxx + Mϕx = 0 in Q,

ϕ|x=0 = 0, ϕx|x=0 = 0, (εϕxx −Mϕ)|x=L = 0 in (0, T ),
ϕ|t=T = ϕT in (0, L),

(3.1)

with ϕT ∈ L2(0, L). In [12], it was proven that for the boundary conditions

ϕx=0 = ϕx|x=0 = ϕ|x=L = 0 in (0, T )

an estimate of the kind ([12, Proposition 3.2])

L̂

0

|ϕ|t=t1 |2 dx ≤ exp
(
− C(M,L)(t2 − t1)

ε1/2

) L̂

0

|ϕ|t=t2 |2 dx

holds as soon as t2 − t1 > L/M . Normally, one would expect that the solutions of (3.1) verify the same type 
of inequality, but this would imply an uniform null controllability result (for large times) with v1 = v2 = 0
in (1.1). This would contradict [1, Theorem 1.2].

Nevertheless, we are able to prove a new kind of dissipation estimate which is stated in the following 
proposition.

Proposition 3.1. Let ε, M > 0 and L0 ∈ (0, L). For every pair (t1, t2) ∈ (0, T )2 such that t2 − t1 > L/M and 
for every ϕT ∈ L2(0, L), the solution ϕ of (3.1) satisfies

L0ˆ

0

|ϕ|t=t1 |2 dx ≤ exp
(
− 2(L− L0)1/2(M(t2 − t1) − L0)

3
√

7ε1/2(t2 − t1)1/2

) L̂

0

|ϕ|t=t2 |2 dx

+ M exp
(
− 2(L− L0)3/2

3
√

7ε1/2(t2 − t1)1/2

) t2ˆ

t1

|ϕ|x=L|2 dt. (3.2)

Proof. We follow the steps used in [12] (see also [1]). Let ρ(t, x) := M(T − t) −x. We multiply the equation 
by exp(rρ)ϕ, r > 0, and integrate in (0, L). After integration by parts, and taking into account the boundary 
condition in (3.1), we obtain

− 1
2

d
dt

L̂

0

erρ|ϕ|2 dx− εr3

2

L̂

0

erρ|ϕ|2 dx + 3εr
2

L̂

0

erρ|ϕx|2 dx + ε

2e
rρ|x=L |ϕx|x=L|2

= M

2 erρ|x=L |ϕ|x=L|2 + εr2

2 erρ|x=L |ϕ|x=L|2 + εrerρ|x=Lϕx|x=Lϕ|x=L. (3.3)
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Let us estimate the last two terms in the right-hand side of (3.3). On the one hand, using Cauchy–
Schwarz’s inequality, we have that

εrerρ|x=Lϕx|x=Lϕ|x=L ≤ ε

2e
rρ|x=L |ϕx|x=L|2 + εr2

2 erρ|x=L |ϕ|x=L|2.

On the other hand, since ϕ|x=0 = 0,

εr2erρ|x=L |ϕ|x=L|2 = εr2erρ|x=L

L̂

0

(|ϕ|2)x dx = 2εr2erρ|x=L

L̂

0

ϕxϕ dx.

Notice that exp(rρ) reaches its minimum at x = L. Therefore, by Cauchy–Schwarz’s inequality we get

εr2erρ|x=L |ϕ|x=L|2 ≤ 3εr
2

L̂

0

erρ|ϕx|2 dx + 2εr3

3

L̂

0

erρ|ϕ|2 dx.

Going back to (3.3), we obtain

−1
2

d
dt

L̂

0

erρ|ϕ|2 dx− 7εr3

6

L̂

0

erρ|ϕ|2 dx ≤ M

2 erρ|x=L |ϕ|x=L|2.

From this inequality, we deduce

− d
dt

(
e−7/3εr3(T−t)

L̂

0

erρ|ϕ|2 dx
)

≤ Me−7/3εr3(T−t)erρ|x=L |ϕ|x=L|2

and integrating between t1 and t2 yields

e−7/3εr3(T−t1)
L̂

0

erρ|t=t1 |ϕ|t=t1 |2 dx ≤ e−7/3εr3(T−t2)
L̂

0

erρ|t=t2 |ϕ|t=t2 |2 dx

+ M

t2ˆ

t1

e−7/3εr3(T−t)erρ|x=L |ϕ|x=L|2 dt. (3.4)

Since

exp
(
rρ|t=t2

)
≤ exp

(
rρ(t2, 0)

)
in (0, L)

and

exp
(
− 7/3εr3(T − t)

)
exp

(
rρ|x=L

)
≤ exp

(
− 7/3εr3(T − t2)

)
exp

(
rρ(t1, L)

)
in (t1, t2) × (0, L),

we get in (3.4) the estimate

L̂

0

e−rx|ϕ|t=t1 |2 dx ≤ e7/3εr3(t2−t1)e−rM(t2−t1)
L̂

0

|ϕ|t=t2 |2 dx + Me7/3εr3(t2−t1)e−rL

t2ˆ

t1

|ϕ|x=L|2 dt. (3.5)
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We observe in (3.5) that, to have any hope to choose r > 0 such that the argument in the exponential 
is negative, we need to truncate the integral in the left-hand side so that the term exp(−rL) does not 
completely disappear. Thus, for any L0 ∈ (0, L), we get

L0ˆ

0

|ϕ|t=t1 |2 dx ≤ e7/3εr3(t2−t1)e−r(M(t2−t1)−L0)
L̂

0

|ϕ|t=t2 |2 dx + Me7/3εr3(t2−t1)e−r(L−L0)
t2ˆ

t1

|ϕ|x=L|2 dt.

(3.6)

The objective now is to choose r > 0 appropriately. We first remark that

7
3εr

3(t2 − t1) − r(M(t2 − t1) − L0) < 0 if 0 < r <

√
3(M(t2 − t1) − L0)1/2√

7ε1/2(t2 − t1)1/2

and

7
3εr

3(t2 − t1) − r(L− L0) < 0 if 0 < r <

√
3(L− L0)1/2√

7ε1/2(t2 − t1)1/2
.

Thus, r > 0 needs to be chosen to satisfy

r < min
{√

3(M(t2 − t1) − L0)1/2√
7ε1/2(t2 − t1)1/2

,

√
3(L− L0)1/2√

7ε1/2(t2 − t1)1/2

}
=

√
3(L− L0)1/2√

7ε1/2(t2 − t1)1/2
.

The last equality holds since L < M(t2 − t1). Let

r := (L− L0)1/2√
7ε1/2(t2 − t1)1/2

.

With this choice of r in (3.6) we obtain

L0ˆ

0

|ϕ|t=t1 |2 dx ≤ exp
(

(L− L0)3/2 − 3(L− L0)1/2(M(t2 − t1) − L0)
3
√

7ε1/2(t2 − t1)1/2

) L̂

0

|ϕ|t=t2 |2 dx

+ M exp
(
− 2(L− L0)3/2

3
√

7ε1/2(t2 − t1)1/2

) t2ˆ

t1

|ϕ|x=L|2 dt.

Using again that L < M(t2 − t1) to estimate the first exponential, we finally deduce (3.2). �
4. Proof of Theorem 1.1

It is well known that the null controllability result stated in Theorem 1.1 is equivalent to the observability 
inequality (see [16])

‖ϕ|t=0‖2
L2(0,L0) ≤ Cobs

(
‖ϕxx|x=0‖2

L2(0,T ) + ‖ϕ|x=L‖2
L2(0,T )

)
(4.1)

where ϕ is the solution of (3.1) and Cobs > 0 is a constant independent of ϕ. We prove (4.1) by means of a 
Carleman estimate (proved in [1]) and the exponential dissipation estimate proved in Proposition 3.1.
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Carleman estimates have been largely used since the celebrated work [10]. Indeed, they are a powerful 
tool to prove observability for parabolic ([9,7]) and dispersive ([17,11]) equations.

Let us introduce the weight function

α(t, x) = p(x)
t1/2(T − t)1/2

(t, x) ∈ (0, T ) × (0, L),

where p(x) is a polynomial of degree 2, strictly positive, increasing and concave. We have the following 
result.

Lemma 4.1. ([1, Proposition 3.2]) Let T, ε > 0 and M ∈ R \ {0}. There exists a positive constant C
independent of T , ε and M such that, for any solution ϕ of (3.1), we have

¨

Q

e−2sα|x=L

(
s5α5

|x=0|ϕ|2 + s3α3
|x=0|ϕx|2 + sα|x=0|ϕxx|2

)
dx dt

≤ C̄ exp
(
C|M |1/2ε−1/2)s5

T̂

0

e−2sα|x=0α5
|x=0|ϕxx|x=0|2 dt (4.2)

for all s ≥ C(T+ε−1/2T 1/2+|M |1/2ε−1/2T ) and C̄ depends at most polynomially on ε−1, ε, |M |−1 and |M |.

Now we are in position to prove (4.1). From Lemma 4.1, fixing s = C(T + ε−1/2T 1/2 + M1/2ε−1/2T )
(recall that M > 0), we obtain

3T/4ˆ

T/4

L̂

0

|ϕ|2 dx dt ≤ C̄ exp
(

C

ε1/2

(
1

T 1/2 + M1/2
)) T̂

0

|ϕxx|x=0|2 dt. (4.3)

Now, we take t1 = 0 in Proposition 3.1 and integrate with respect to t2 = t between T/4 and 3T/4 in 
(3.2), provided that T > 4L/M . This way, we have

L0ˆ

0

|ϕ|t=0|2 dx ≤ 2
T

3T/4ˆ

T/4

exp
(
− 2(L− L0)1/2(Mt− L0)

3
√

7ε1/2t1/2

) L̂

0

|ϕ|2 dx dt

+ 2M
T

3T/4ˆ

T/4

exp
(
− 2(L− L0)3/2

3
√

7ε1/2t1/2

) tˆ

0

|ϕ|x=L|2 ds dt. (4.4)

Since in (T/4, 3T/4) it is verified that

exp
(
− 2(L− L0)1/2(Mt− L0)

3
√

7ε1/2t1/2

)
≤ exp

(
− (L− L0)1/2(MT − 4L0)

3
√

7ε1/2T 1/2

)

and

exp
(
− 2(L− L0)3/2

3
√

7ε1/2t1/2

)
≤ exp

(
− 4(L− L0)3/2

3
√

21ε1/2T 1/2

)
,

we obtain from (4.4)
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L0ˆ

0

|ϕ|t=0|2 dx ≤ M exp
(
− 4(L− L0)3/2

3
√

21ε1/2T 1/2

) T̂

0

|ϕ|x=L|2 dt

+ 2
T

exp
(
− (L− L0)1/2(MT − 4L0)

3
√

7ε1/2T 1/2

) 3T/4ˆ

T/4

L̂

0

|ϕ|2 dx dt (4.5)

for every T > 4L/M . Going back to (4.3) we find that

L0ˆ

0

|ϕ|t=0|2 dx ≤ M exp
(
− 4(L− L0)3/2

3
√

21ε1/2T 1/2

) T̂

0

|ϕ|x=L|2 dt

+ C̄

T
exp

(
C(1 + M1/2T 1/2) − (3

√
7)−1(L− L0)1/2(MT − 4L0)

ε1/2T 1/2

) T̂

0

|ϕxx|x=0|2 dt. (4.6)

Notice that at this point, observability inequality (4.1) is proved and therefore the existence of two controls 
vε0, v

ε
2 ∈ L2(0, T ) driving the solution y of (1.1) to zero at time T .

Let us now deduce (1.4). From (4.6), it suffices to consider T = K/M for K > 0 sufficiently large to 
obtain (1.4). This concludes the proof of Theorem 1.1.

5. Proof of Theorem 1.3

The proof of Theorem 1.3 follows the same strategy of Theorem 1.1, that is, we prove the observability 
inequality

‖ϕ|t=0‖2
L2(0,L0) ≤ Cobs

(
‖ϕx|x=L‖2

L2(0,T ) + ‖ϕ|x=L‖2
L2(0,T )

)
. (5.1)

In this case, a new Carleman inequality is needed, one with observation terms as in (5.1). To accomplish 
this, we need to consider the weight function

β(t, x) = q(x)
t1/2(T − t)1/2

(5.2)

where q(x) is a polynomial of degree 2, strictly positive, decreasing and concave. We further assume that q
satisfies

2q(L) > q(0). (5.3)

(Take, for instance, q(x) = − x2

L2 − x
L + 6.) Let us state the new Carleman inequality.

Proposition 5.1. Let T, ε > 0 and M ∈ R \ {0}. There exists a positive constant C independent of T , ε and 
M such that, for any solution ϕ of (3.1), we have

¨

Q

e−2sβ
(
s5β5|ϕ|2 + s3β3|ϕx|2 + sβ|ϕxx|2

)
dx dt ≤ Cs5

T̂

0

e−2sβ|x=Lβ5
|x=L|ϕ|x=L|2

+ Cs5(1 + MT 5)
T̂

0

e−2s(2β|x=L−β|x=0)β5
|x=L|ϕx|x=L|2 dt (5.4)

for all s ≥ C(T + ε−1/2T 1/2 + |M |1/2ε−1/2T ).
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Notice that, unlike the Carleman estimate proved in [14], (5.4) holds for the optimal power of t(T − t)
for the KdV equation, which is crucial to obtain (1.6). Furthermore, let us recall that in [1] a change of 
unknowns is considered to deal with the boundary condition εϕxx|x=L−Mϕ|x=L = 0 and prove (4.2). This 
is indeed the obstruction found in [14]. Here, we are able to deal with this boundary condition by slightly 
changing the weights of the observation terms.

The details of the proof of Proposition 5.1 is in Appendix A.
The proof of the observability inequality (5.1), and in consequence of Theorem 1.3, is actually analogous 

to (5.1). However, we sketch it to clarify the dependence on the parameters in (1.6).
From Proposition 5.1, fixing s = C(T + ε−1/2T 1/2 + M1/2ε−1/2T ), we obtain

3T/4ˆ

T/4

L̂

0

|ϕ|2 dx dt ≤ C exp
(

C

ε1/2

(
1

T 1/2 + M1/2
)) T̂

0

|ϕ|x=L|2 dt

+ C(1 + MT ) exp
(

C

ε1/2

(
1

T 1/2 + M1/2
)) T̂

0

|ϕx|x=L|2 dt. (5.5)

We combine (5.5) with (4.5). This gives, for every T > 4L/M ,

L0ˆ

0

|ϕ|t=0|2 dx ≤ M exp
(
− 4(L− L0)3/2

3
√

21ε1/2T 1/2

) T̂

0

|ϕ|x=L|2 dt

+ C

T
exp

(
C(1 + M1/2T 1/2) − (3

√
7)−1(L− L0)1/2(MT − 4L0)

ε1/2T 1/2

) T̂

0

|ϕ|x=L|2 dt

+ C
( 1
T

+ M
)

exp
(
C(1 + M1/2T 1/2) − (3

√
7)−1(L− L0)1/2(MT − 4L0)

ε1/2T 1/2

) T̂

0

|ϕx|x=L|2 dt.

It suffices now to take T = K/M , with K > 0 large enough to obtain (1.6).
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Appendix A. Proof of Proposition 5.1

Let us start by noticing that from (5.2) we have

C0 ≤ Tβ, C0β ≤ −βx ≤ C1β, C0β ≤ −βxx ≤ C1β, (A.1)

and

|βt| + |βxt| + |βxxt| ≤ C1Tβ
3, |βtt| ≤ C1T

2β5, (A.2)

for every (t, x) ∈ Q and for some positive constants C0 and C1 that do not depend on T . As in [11] and [12]
we define ψ := e−sβϕ. From (3.1) we obtain



932 N. Carreño, S. Guerrero / J. Math. Anal. Appl. 457 (2018) 922–943
L1ψ + L2ψ = L3ψ,

where

L1ψ := εψxxx + ψt + 3εs2β2
xψx −Mψx,

L2ψ := (εs3β3
x + sβt −Msβx)ψ + 3εsβxxψx + 3εsβxψxx

and

L3ψ := −3εs2βxβxxψ.

Notice that

ψ|x=0 = 0 (A.3)

ψx|x=0 = 0. (A.4)

Taking the L2-norm we have

‖L1ψ‖2
L2(Q) + ‖L2ψ‖2

L2(Q) + 2(L1ψ, L2ψ)L2(Q) = ‖L3ψ‖2
L2(Q). (A.5)

In what follows we compute the L2-product. Then, we come back to the original variable ϕ. This procedure 
is actually quite standard. The boundary condition at x = L in (3.1) leaves a boundary term that cannot 
be trivially estimated. The main novelty here is the estimation of the remaining boundary term (see (A.16)
below) without the necessity of changing the power of t(T − t) in (5.2) as in [14, Proposition 3]. Let us 
denote by (Liψ)j the j-th term of Liψ. We have divided the rest of the proof in four main steps.

Step 1. Computation of the L2-product.

Step 1.1. Computing ((L1ψ)1, L2ψ)L2(Q).

• Let us integrate by parts twice in space the first term:

((L1ψ)1, (L2ψ)1)L2(Q) = −1
2ε

¨

Q

(εs3β3
x + sβt −Msβx)∂x|ψx|2 dx dt

−ε

¨

Q

(3εs3β2
xβxx + sβxt −Msβxx)ψψxx dx dt

+ε

T̂

0

(εs3β3
x + sβt −Msβx)|x=Lψ|x=Lψxx|x=L dt

= 3
2ε

¨

Q

(3εs3β2
xβxx + sβxt −Msβxx)|ψx|2 dx dt

−1
2ε

T̂

0

(εs3β3
x + sβt −Msβx)|x=L|ψx|x=L|2 dt

−3ε2s3
¨

β3
xx|ψ|2 dx dt + 1

2ε
T̂

(6εs3βxβ
2
xx + sβxxt)|x=L|ψ|x=L|2 dt
Q 0



N. Carreño, S. Guerrero / J. Math. Anal. Appl. 457 (2018) 922–943 933
−ε

T̂

0

(3εs3β2
xβxx + sβxt −Msβxx)|x=Lψ|x=Lψx|x=L dt

+ε

T̂

0

(εs3β3
x + sβt −Msβx)|x=Lψ|x=Lψxx|x=L dt.

From (A.1)–(A.2) and Young’s inequality, we obtain

((L1ψ)1, (L2ψ)1)L2(Q) ≥
9
2ε

2s3
¨

Q

β2
xβxx|ψx|2 dx dt− Cεs(T + |M |T 2)

¨

Q

β3|ψx|2 dx dt

−Cε2s3T 2
¨

Q

β5|ψ|2 dx dt− C
(
ε2s3 + εs(T + |M |T 2)

) T̂

0

β3
|x=L|ψx|x=L|2 dt

−C
(
ε2s5 + ε2s3T 2 + ε1/2s2(T 3/2 + |M |3/2T 3) + εsT 2(T + |M |T 2)

) T̂

0

β5
|x=L|ψ|x=L|2 dt

−C
(
ε2s + ε3/2(T 1/2 + |M |1/2T )

) T̂

0

β|x=L|ψxx|x=L|2 dt.

• In the second term, we integrate by parts again in space:

((L1ψ)1, (L2ψ)2)L2(Q) = −3ε2s

¨

Q

βxx|ψxx|2 dx dt + 3ε2s

T̂

0

βxx|x=Lψx|x=Lψxx|x=L dt

≥ −3ε2s

¨

Q

βxx|ψxx|2 dx dt− Cε2s

T̂

0

β|x=L|ψxx|x=L|2 dt− Cε2sT 2
T̂

0

β3
|x=L|ψx|x=L|2 dt.

To obtain the above inequality, we have used the properties (A.1) and Young’s inequality.
• Analogously for the third term:

((L1ψ)1, (L2ψ)3)L2(Q) = −3
2ε

2s

¨

Q

βxx|ψxx|2 dx dt + 3
2ε

2s

T̂

0

βx|x=L|ψxx|x=L|2 dt

− 3
2ε

2s

T̂

0

βx|x=0|ψxx|x=0|2 dt ≥ −3
2ε

2s

¨

Q

βxx|ψxx|2 dx dt

− 3
2ε

2s

T̂

0

βx|x=0|ψxx|x=0|2 dt− Cε2s

T̂

0

β|x=L|ψxx|x=L|2 dt.

• Putting together these computations, we obtain
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((L1ψ)1, L2ψ)L2(Q) ≥
9
2ε

2s3
¨

Q

β2
xβxx|ψx|2 dx dt− 9

2ε
2s

¨

Q

βxx|ψxx|2 dx dt

− Cεs(T + |M |T 2)
¨

Q

β3|ψx|2 dx dt− Cε2s3T 2
¨

Q

β5|ψ|2 dx dt

− 3
2ε

2s

T̂

0

βx|x=0|ψxx|x=0|2 dt− C
(
ε2s3 + ε2sT 2 + εs(T + |M |T 2)

) T̂

0

β3
|x=L|ψx|x=L|2 dt

− C
(
ε2s5 + ε2s3T 2 + ε1/2s2(T 3/2 + |M |3/2T 3) + εsT 2(T + |M |T 2)

) T̂

0

β5
|x=L|ψ|x=L|2 dt

− C
(
ε2s + ε3/2(T 1/2 + |M |1/2T )

) T̂

0

β|x=L|ψxx|x=L|2 dt.

(A.6)

Step 1.2. Computing ((L1ψ)2, L2ψ)L2(Q).

• We integrate by parts in time the first term and use (A.1)–(A.2):

((L1ψ)2, (L2ψ)1)L2(Q) = −1
2

¨

Q

(3εs3β2
xβxt + sβtt −Msβxt)|ψ|2 dx dt

≥ −C
(
εs3T + s(T 2 + |M |T 3)

)¨
Q

β5|ψ|2 dx dt.

• The second term:

((L1ψ)2, (L2ψ)2)L2(Q) = 3εs
¨

Q

βxxψxψt dx dt.

• In the third term, we integrate by parts first in space and then in time. We obtain, together 
with (A.1)–(A.2),

((L1ψ)2, (L2ψ)3)L2(Q) = −3
2εs

¨

Q

βx∂t|ψx|2 dx dt− 3εs
¨

Q

βxxψxψt dx dt

+ 3εs
T̂

0

βx|x=Lψx|x=Lψt|x=L dt = 3
2εs

¨

Q

βxt|ψx|2 dx dt

− 3εs
¨

Q

βxxψxψt dx dt + 3εs
T̂

0

βx|x=Lψx|x=Lψt|x=L dt

≥ −3εs
¨

Q

βxxψxψt dx dt + 3εs
T̂

0

βx|x=Lψx|x=Lψt|x=L dt− CεsT

¨

Q

β3|ψx|2.

• Putting together these inequalities, we get
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((L1ψ)2, L2ψ)L2(Q) ≥ −C
(
εs3T + s(T 2 + |M |T 3)

)¨
Q

β5|ψ|2 dx dt

− CεsT

¨

Q

β3|ψx|2 + 3εs
T̂

0

βx|x=Lψx|x=Lψt|x=L dt.

(A.7)

Step 1.3. Computing ((L1ψ)3, L2ψ)L2(Q).

• We integrate by parts in space the first term and from (A.1)–(A.2) we obtain

((L1ψ)3, (L2ψ)1)L2(Q)

= −1
2ε

¨

Q

(15εs5β4
xβxx + 6s3βxβxxβt + 3s3β2

xβxt − 9Ms3β2
xβxx)|ψ|2 dx dt

+ 3
2ε

T̂

0

(εs5β5
x + s3β2

xβt −Ms3β3
x)|x=L|ψ|x=L|2 dt

≥ 15
2 C5

0ε
2s5

¨

Q

β5|ψ|2 dx dt− Cεs3(T + |M |T 2)
¨

Q

β5|ψ|2 dx dt

− Cε(εs5 + s3(T + |M |T 2))
T̂

0

β5
|x=L|ψ|x=L|2 dt.

• The second term is

((L1ψ)3, (L2ψ)2)L2(Q) = 9ε2s3
¨

Q

β2
xβxx|ψx|2 dx dt.

• In the third term, integration by parts in space and (A.1) yield

((L1ψ)3, (L2ψ)3)L2(Q) = −27
2 ε2s3

¨

Q

β2
xβxx|ψx|2 dx dt + 9

2ε
2s3

T̂

0

β3
x|x=L|ψx|x=L|2 dt

≥ −27
2 ε2s3

¨

Q

β2
xβxx|ψx|2 dx dt− Cε2s3

T̂

0

β3
|x=L|ψx|x=L|2 dt.

• Putting together these estimates, we get

((L1ψ)3, L2ψ)L2(Q) ≥ −9
2ε

2s3
¨

Q

β2
xβxx|ψx|2 dx dt + 15

2 C5
0ε

2s5
¨

Q

β5|ψ|2 dx dt

− Cεs3(T + |M |T 2)
¨

Q

β5|ψ|2 dx dt− Cε2s3
T̂

0

β3
|x=L|ψx|x=L|2 dt

− Cε
(
εs5 + s3(T + |M |T 2)

) T̂

β5
|x=L|ψ|x=L|2 dt.

(A.8)
0
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Step 1.4. Computing ((L1ψ)4, L2ψ)L2(Q).

• As before, we integrate by parts in space the first term. From (A.1)–(A.2), this gives

((L1ψ)4, (L2ψ)1)L2(Q) =M

2

¨

Q

(3εs3β2
xβxx + sβxt −Msβxx)|ψ|2 dx dt

− M

2

T̂

0

(εs3β3
x + sβt −Msβx)|x=L|ψ|x=L|2 dt

≥ −C(εs3 + s(T + |M |T 2))|M |T 2
¨

Q

β5|ψ|2 dx dt

− C(εs3 + s(T + |M |T 2))|M |T 2
T̂

0

β5
|x=L|ψ|x=L|2 dt.

• From (A.1), the second term gives directly

((L1ψ)4, (L2ψ)2)L2(Q) ≥ −C|M |εsT 2
¨

Q

β3|ψx|2 dx dt.

• The third and final term gives, after integration by parts and taking (A.1) into account,

((L1ψ)4, (L2ψ)3)L2(Q) = 3
2Mεs

¨

Q

βxx|ψx|2 dx dt− 3
2Mεs

T̂

0

βx|x=L|ψx|x=L|2 dt

≥ −C|M |εsT 2
¨

Q

β3|ψx|2 dx dt− C|M |εsT 2
T̂

0

β3
|x=L|ψx|x=L|2 dt.

• Putting together these expressions, we obtain:

((L1ψ)4, L2ψ)L2(Q) ≥ −C
(
εs3 + s

(
T + |M |T 2))|M |T 2

¨

Q

β5|ψ|2 dx dt

− C|M |εsT 2
¨

Q

β3|ψx|2 dx dt− C|M |εsT 2
T̂

0

β3
|x=L|ψx|x=L|2 dt

− C(εs3 + s(T + |M |T 2))|M |T 2
T̂

0

β5
|x=L|ψ|x=L|2 dt.

(A.9)

Step 2. The entire product (L1ψ, L2ψ)L2(Q).

We gather estimates (A.6)–(A.9). We find the following positive terms:

A1 := 15
2 C5

0ε
2s5

¨
β5|ψ|2 dx dt, A2 := 9

2C0ε
2s

¨
β|ψxx|2 dx dt
Q Q
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and

A3 := 3
2
C0ε

2s

T̂

0

β|x=0|ψxx|x=0|2 dt.

Now, let us estimate the nonpositive integrals coming from the addition of (A.6)–(A.9) in terms of Ai.
We begin with the terms concerning |ψ|2 in Q. They are all bounded by

C
(
s3(εT + ε2T 2 + |M |εT 2) + s

(
T 2 + |M |T 3 + |M |2T 4))¨

Q

β5|ψ|2 dx dt

which are absorbed by A1 by taking s ≥ C(T + T 1/2ε−1/2 + |M |1/2ε−1/2T ).
With s ≥ C(T +T 1/2ε−1/2 + |M |1/2ε−1/2T ), the integrals concerning |ψ|x=L|2, |ψx|x=L|2 and |ψxx|x=L|2, 

can be bounded by

Cε2
T̂

0

(
sβ|x=L|ψxx|x=L|2 + s3β3

|x=L|ψx|x=L|2 + s5β5
|x=L|ψ|x=L|2

)
dt. (A.10)

Now, we deal with the terms containing |ψx|2 in Q. They can all be estimated by

Cεs(T + |M |T 2)
¨

Q

β3|ψx|2 dx dt.

Integration by parts in space shows that

Cεs(T + |M |T 2)
¨

Q

β3|ψx|2 dx dt = 3
2Cεs(T + |M |T 2)

¨

Q

(2ββ2
x + β2βxx)|ψ|2 dx dt

− 3
2Cεs(T + |M |T 2)

T̂

0

β2
|x=Lβx|x=L|ψ|x=L|2 dt− Cεs(T + |M |T 2)

¨

Q

β3ψψxx dx dt

+ Cεs(T + |M |T 2)
T̂

0

β3
|x=Lψ|x=Lψx|x=L dt

≥ −C
(
εsT 2(T + |M |T 2) + ε1/2s2(T 3/2 + |M |3/2T 3)

)¨
Q

β5|ψ|2 dx dt

− Cε3/2(T 1/2 + |M |1/2T )
¨

Q

β|ψxx|2 dx dt− Cε
(
sT 2(T + |M |T 2)

) T̂

0

β5
|x=L|ψ|x=L|2 dt

− Cεs(T + |M |T 2)
T̂

0

β3
|x=L|ψx|x=L|2 dt. (A.11)

Notice that here we have used (A.4) and Young’s inequality. Taking s ≥ C(T+ε−1/2T 1/2+|M |1/2ε−1/2T ), 
the first two integrals can be absorbed by A1 and A2, respectively, and the two remaining can be estimated 
by (A.10).
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Finally, all these estimates give

(L1ψ, L2ψ)L2(Q) ≥ C0ε
2s5

¨

Q

β5|ψ|2 dx dt + C0ε
2s

¨

Q

β|ψxx|2 dx dt

+ C0ε
2s

T̂

0

β|x=0|ψxx|x=0|2 dt + 3εs
T̂

0

βx|x=Lψx|x=Lψt|x=L dt

− Cε2
T̂

0

(
sβ|x=L|ψxx|x=L|2 + s3β3

|x=L|ψx|x=L|2 + s5β5
|x=L|ψ|x=L|2

)
dt

for every s ≥ C(T + ε−1/2T 1/2 + |M |1/2ε−1/2T ). Coming back to (A.5), and together with

‖L3ψ‖2
L2(Q) ≤ Cε2s4T

¨

Q

β5|ψ|2 dx dt,

we obtain the following inequality for ψ:

ε2s5
¨

Q

β5|ψ|2 dx dt + ε2s

¨

Q

β|ψxx|2 dx dt + ε2s

T̂

0

β|x=0|ψxx|x=0|2 dt

≤ Cε2
T̂

0

(
sβ|x=L|ψxx|x=L|2 + s3β3

|x=L|ψx|x=L|2 + s5β5
|x=L|ψ|x=L|2

)
dt

− 3εs
T̂

0

βx|x=Lψx|x=Lψt|x=L dt (A.12)

for every s ≥ C(T + ε−1/2T 1/2 + |M |1/2ε−1/2T ).
At this point, there are two tasks left to do: first, to go back to the original variable ϕ; and second, to 

estimate the last boundary term in (A.12). This is the purpose of the following pages.

Step 3. Coming back to the original variable.

Let us now retrieve the original variable ϕ. First, we point out that the same computations made in 
(A.11) yield

ε2s3
¨

Q

β3|ψx|2 dx dt ≤Cε2s5
¨

Q

β5|ψ|2 dx dt + Cε2s

¨

Q

β|ψxx|2 dx dt

+ Cε2
T̂

0

(
s3β3

|x=L|ψx|x=L|2 + s5β5
|x=L|ψ|x=L|2

)
dt

as long as s ≥ CT . This means that we can add this term to the left-hand side of (A.12), and together with 
ψ = e−sβϕ, we obtain directly that
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ε2s5
¨

Q

e−2sββ5|ϕ|2 dx dt + ε2s3
¨

Q

β3|ψx|2 dx dt + ε2s

¨

Q

β|ψxx|2 dx dt

+ ε2s

T̂

0

β|x=0|ψxx|x=0|2 dt ≤ −3εs
T̂

0

βx|x=Lψx|x=Lψt|x=L dt

+ Cε2
T̂

0

(
sβ|x=L|ψxx|x=L|2 + s3β3

|x=L|ψx|x=L|2 + s5e−2sβ|x=Lβ5
|x=L|ϕ|x=L|2

)
dt (A.13)

for every s ≥ C(T + ε−1/2T 1/2 + |M |1/2ε−1/2T ).
Taking the derivative with respect to x in ψ = e−sβϕ, we find that

s3/2e−sββ3/2ϕx = s3/2β3/2ψx + s5/2e−sββ3/2βxϕ, (A.14)

and taking the L2(Q)-norm, we see that we can add

ε2s3
¨

Q

e−2sββ3|ϕx|2 dx dt

to the left-hand side of (A.13) (recall (A.1)). Similarly, from (A.1) and

s1/2e−sββ1/2ϕxx = s1/2β1/2ψxx + 2s3/2β1/2βxψx + e−sββ1/2(s3/2β1/2βxx + s5/2β2
x)ϕ, (A.15)

we can add

ε2s

¨

Q

e−2sββ|ϕxx|2 dx dt

to the left-hand side of (A.13) if s ≥ CT . Taking the value at x = L in (A.14) and (A.15), we obtain from 
(A.13)

ε2s5
¨

Q

e−2sββ5|ϕ|2 dx dt + ε2s3
¨

Q

e−2sββ3|ϕx|2 dx dt + ε2s

¨

Q

e−2sββ|ϕxx|2 dx dt

+ ε2s

T̂

0

e−2sβ|x=0β|x=0|ϕxx|x=0|2 dt ≤ −3εs
T̂

0

βx|x=Lψx|x=Lψt|x=L dt

+ Cε2
T̂

0

e−2sβ|x=L

(
sβ|x=L|ϕxx|x=L|2 + s3β3

|x=L|ϕx|x=L|2 + s5β5
|x=L|ϕ|x=L|2

)
dt

for every s ≥ C(T + ε−1/2T 1/2 + |M |1/2ε−1/2T ). Since ϕxx|x=L = Mε−1ϕ|x=L, we get
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ε2s5
¨

Q

e−2sββ5|ϕ|2 dx dt + ε2s3
¨

Q

e−2sββ3|ϕx|2 dx dt + ε2s

¨

Q

e−2sββ|ϕxx|2 dx dt

+ ε2s

T̂

0

e−2sβ|x=0β|x=0|ϕxx|x=0|2 dt ≤ −3εs
T̂

0

βx|x=Lψx|x=Lψt|x=L dt

+ Cε2
T̂

0

e−2sβ|x=L

(
s3β3

|x=L|ϕx|x=L|2 + s5β5
|x=L|ϕ|x=L|2

)
dt (A.16)

for every s ≥ C(T + ε−1/2T 1/2 + |M |1/2ε−1/2T ).

Step 4. Estimation of the remaining boundary term and conclusion.

Finally, we are in position to estimate the boundary term

B := 3εs
T̂

0

βx|x=Lψx|x=Lψt|x=L dt.

The idea is to write B in terms of ϕ and use the equation in (3.1). The same idea was used in [14], but 
here we do not need to change the power of t(T − t) in (5.2).

As before, it is easy to see from ψ = e−sβϕ that

B = 3εs3
T̂

0

(
e−2sββtβ

2
x

)
|x=L

|ϕ|x=L|2 dt− 3εs2
T̂

0

(
e−2sββtβx

)
|x=L

ϕ|x=Lϕx|x=L dt

+ 3
2εs

2
T̂

0

(
e−2sββx

2
)
t|x=L

|ϕ|x=L|2 dt + 3εs
T̂

0

(
e−2sββx

)
|x=L

ϕx|x=Lϕt|x=L dt.

From (A.1)–(A.2) and Young’s inequality, we see that

B ≤ Cε2
T̂

0

e−2sβ|x=L

(
s3β3

|x=L|ϕx|x=L|2 + s5β5
|x=L|ϕ|x=L|2

)
dt + 3εs

T̂

0

e−2sβ|x=Lβx|x=Lϕx|x=Lϕt|x=L dt

(A.17)

for every s ≥ C(T + ε−1/2T 1/2). Now, the last term in this inequality can be estimated as follows:

B̃ := 3εs
T̂

0

e−2sβ|x=Lβx|x=Lϕx|x=Lϕt|x=L dt

≤ Cεs3
T̂

0

e−2s(2β|x=L−β|x=0)β2
x|x=Lβ

2
|x=0|ϕx|x=L|2 dt + εs−1

T̂

0

β−2
|x=0e

−2sβ|x=0 |ϕt|x=L|2 dt

≤ Cε2s5
T̂

0

e−2s(2β|x=L−β|x=0)β5
|x=L|ϕx|x=L|2 dt + εs−1

T̂

0

β−2
|x=0e

−2sβ|x=0 |ϕt|x=L|2 dt (A.18)

for every s ≥ Cε−1/2T 1/2. To estimate the last term in this inequality, we multiply the equation on (3.1)
by 4εs−1β−2

x=0 exp(−2sβ|x=0)ϕt and integrate in Q. Integration by parts in both space and time yield
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2εs−1
T̂

0

e−2sβ|x=0β−2
|x=0|ϕt|x=L|2 dt = −4ε2s−1

T̂

0

e−2sβ|x=0β−2
|x=0ϕxx|x=Lϕxt|x=L dt

− 2ε2s−1
¨

Q

(
e−2sβ|x=0β−2

|x=0
)
t
|ϕxx|2 dx dt− 2εs−1M

¨

Q

(
e−2sβ|x=0β−2

|x=0
)
t
|ϕx|2 dx dt. (A.19)

Since ϕxx|x=L = Mε−1ϕ|x=L, the first term in the right-hand side of (A.19) satisfies

− 4ε2s−1
T̂

0

e−2sβ|x=0β−2
|x=0ϕxx|x=Lϕxt|x=L dt

= −4εs−1M

T̂

0

e−2sβ|x=0β−2
|x=0ϕ|x=Lϕxt|x=L dt

= 4εs−1M

T̂

0

(
e−2sβ|x=0β−2

|x=0
)
t
ϕ|x=Lϕx|x=L dt + 4εs−1M

T̂

0

e−2sβ|x=0β−2
|x=0ϕt|x=Lϕx|x=L dt.

Using (A.1)–(A.2) and Young’s inequality, we can obtain

− 4ε2s−1
T̂

0

e−2sβ|x=0β−2
|x=0ϕxx|x=Lϕxt|x=L dt ≤ εs−1

T̂

0

e−2sβ|x=0β−2
|x=0|ϕt|x=L|2 dt

+ Cεs−1M2
T̂

0

e−2sβ|x=Lβ−2
|x=L|ϕx|x=L|2 dt + Cε2s3

T̂

0

e−2sβ|x=Lβ3
|x=L|ϕx|x=L|2 dt

+ Cε2s5
T̂

0

e−2sβ|x=Lβ5
|x=L|ϕ|x=L|2 dt, (A.20)

for every s ≥ C(T + |M |1/2ε−1/2T ). Notice that we also have used that exp(−2sβ(t, ·)) reaches its minimum 
at x = 0. Using again (A.1)–(A.2) for the two last terms of (A.19), they are estimated by

Cε2(s−1T 2 + T )
¨

Q

e−2sββ|ϕxx|2 dx dt + Cε
(
s−1|M |T 4 + |M |T 3)¨

Q

e−2sββ3|ϕx|2 dx dt.

Therefore, taking into account (A.20) and coming back to (A.19), we obtain

εs−1
T̂

0

e−2sβ|x=Lβ−2
|x=L|ϕt|x=L|2 dt ≤ Cεs−1M2

T̂

0

e−2sβ|x=Lβ−2
|x=L|ϕx|x=L|2 dt

+ Cε2s3
T̂

0

e−2sβ|x=Lβ3
|x=L|ϕx|x=L|2 dt + Cε2s5

T̂

0

e−2sβ|x=Lβ5
|x=L|ϕ|x=L|2 dt

+ Cε2(s−1T 2 + T )
¨

Q

e−2sββ|ϕxx|2 dx dt + Cε
(
s−1|M |T 4 + |M |T 3)¨

Q

e−2sββ3|ϕx|2 dx dt
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for every s ≥ C(T + |M |1/2ε−1/2T ). Since this is the last term in (A.18), we plug the estimate of B̃ in (A.17)
and get

B ≤ Cε2s3
T̂

0

e−2sβ|x=Lβ3
|x=L|ϕx|x=L|2 dt + Cε2s5

T̂

0

e−2sβ|x=Lβ5
|x=L|ϕ|x=L|2 dt

+ Cε2s5
T̂

0

e−2s(2β|x=L−β|x=0)β5
|x=L|ϕx|x=L|2 dt + Cεs−1M2

T̂

0

e−2sβ|x=Lβ−2
|x=L|ϕx|x=L|2 dt

+ Cε2(s−1T 2 + T )
¨

Q

e−2sββ|ϕxx|2 dx dt + Cε
(
s−1|M |T 4 + |M |T 3)¨

Q

e−2sββ3|ϕx|2 dx dt

for every s ≥ C(T + ε−1/2T 1/2 + |M |1/2ε−1/2T ). Notice that since 2β|x=L − β|x=0 < β|x=L (recall that β is 
decreasing), we have the more compact form

B ≤ Cε2(s−1T 2 + T )
¨

Q

e−2sββ|ϕxx|2 dx dt

+ Cε
(
s−1MT 4 + MT 3)¨

Q

e−2sββ3|ϕx|2 dx dt + Cε2s5
T̂

0

e−2sβ|x=Lβ5
|x=L|ϕ|x=L|2 dt

+ Cε2s5(1 + |M |T )
T̂

0

e−2s(2β|x=L−β|x=0)β5
|x=L|ϕx|x=L|2 dt

for every s ≥ C(T + ε−1/2T 1/2 + |M |1/2ε−1/2T ).
Finally, we can use this estimate of B in (A.16). The global terms of ϕx and ϕxx are absorbed by the 

left-hand side of (A.16) by taking s ≥ C(T + |M |1/2ε−1/2T ) and we deduce

ε2s5
¨

Q

e−2sββ5|ϕ|2 dx dt + ε2s3
¨

Q

e−2sββ3|ϕx|2 dx dt + ε2s

¨

Q

e−2sββ|ϕxx|2 dx dt

+ ε2s

T̂

0

e−2sβ|x=0β|x=0|ϕxx|x=0|2 dt ≤ Cε2s5
T̂

0

e−2sβ|x=Lβ5
|x=L|ϕ|x=L|2 dt

+ Cε2s5(1 + |M |T )
T̂

0

e−2s(2β|x=L−β|x=0)β5
|x=L|ϕx|x=L|2 dt

for every s ≥ C(T + ε−1/2T 1/2 + |M |1/2ε−1/2T ). The proof of Proposition 5.1 is complete.
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