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Abstract

In this paper we prove the existence of controls insensitizing the L2-norm of the
solution of the Boussinesq system. The novelty here is that no control is used on
the temperature equation. Furthermore, the control acting on the fluid equation can
be chosen to have one vanishing component. It is well known that the insensitizing
control problem is equivalent to a null controllability result for a cascade system, which
is obtained thanks to a suitable Carleman estimate for the adjoint of the linearized
system and an inverse mapping theorem. The particular form of the adjoint equation
will allow us to obtain the null controllability of the linearized system.

Keywords: Navier-Stokes system, Boussinesq system, null controllability, Carleman
inequalities, insensitizing controls

1 Introduction

Let Ω be a nonempty bounded connected open subset of RN (N = 2 or 3) of class C∞.
Let T > 0 and let ω ⊂ Ω be a (small) nonempty open subset which is the control set and
O1,O2 ⊂ Ω which are called the observatories or observation sets. Throughout this paper,
we will use the notation Q = Ω× (0, T ) and Σ = ∂Ω× (0, T ).

Let us recall the definition of some usual spaces in the context of incompressible fluids:

V = {y ∈ C∞0 (Ω)N : ∇ · y = 0 in Ω}.

We denote by H the closure of the space V in L2(Ω) and by V its closure in H1
0 (Ω).

We consider the Boussinesq system
yt −∆y + (y · ∇)y +∇p = f + v1ω + θ eN , ∇ · y = 0 in Q,
θt −∆θ + y · ∇θ = f0 in Q,
y = 0, θ = 0 on Σ,

y(0) = y0 + τ ŷ0, θ(0) = θ0 + τ θ̂0 in Ω,

(1.1)

where

eN =

{
(0, 1) if N = 2,
(0, 0, 1) if N = 3,
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stands for the gravity vector field, y = y(x, t) represents the velocity of the fluid at the point
x and time t, θ = θ(x, t) their temperature. Moreover, v = v(x, t) stands for the control
which acts only over the set ω, (f, f0) ∈ L2(Q)N+1 are given externally applied forces and
the initial state (y(0), θ(0)) is partially unknown in the following sense:

• y0 ∈ H and θ0 ∈ L2(Ω) are known,

• ŷ0 ∈ H and θ̂0 ∈ L2(Ω) are unknown with ‖ŷ0‖L2(Ω)N =
∥∥θ̂0

∥∥
L2(Ω)

= 1, and

• τ is a small unknown real number.

As it was introduced by J.-L. Lions in [24], we are interested in insensitizing the functional

Jτ (y, θ) :=
1

2

∫∫
O1×(0,T )

|y|2 dxdt+
1

2

∫∫
O2×(0,T )

|θ|2 dx dt. (1.2)

In this context, this means to find a control v ∈ L2(ω × (0, T )) such that

∂Jτ (y, θ)

∂τ

∣∣∣∣
τ=0

= 0 ∀ (ŷ0, θ̂0) ∈ L2(Ω)N+1 such that ‖ŷ0‖L2(Ω)N =
∥∥θ̂0

∥∥
L2(Ω)

= 1, (1.3)

that is, that the uncertainty of the initial condition is not perceived by the observation made
by the functional.

The first results concerning the existence of insensitizing controls were obtained for the
heat equation in [5, 28]. Later on, in the papers [6, 7, 8] the authors deal with different types
of nonlinearities in the equation and/or the boundary conditions. In [16], the existence of
controls insensitizing the gradient of the solution is established. As long as insensitizing
controls for fluid equations are concerned, we can mention [17] for the Stokes system and
[18, 12] for the Navier-Stokes equations. In particular, [12] obtains insensitizing vector
controls with one component equal to zero. This result was later extended to the Boussinesq
system (1.1), where the authors proved the existence of insensitizing controls for (1.1) with
v having up to two vanishing components and a control in the temperature equation.

This paper is thought to be a complement to [11]. Here, we are interested in insensitizing
controls acting only on the fluid equation. Furthermore, we will see that this control can be
chosen to have one vanishing component.

It is well known that (1.3) is equivalent to the (partial) null controllability of the cascade
system (see for instance [5]):

wt −∆w + (w · ∇)w +∇p0 = f + v1ω + r eN , ∇ · w = 0 in Q,
−zt −∆z + (z · ∇t)w − (w · ∇)z + q∇r +∇p1 = w1O1

, ∇ · z = 0 in Q,
rt −∆r + w · ∇r = f0 in Q,
−qt −∆q − w · ∇q = zN + r 1O2

in Q,
w = z = 0, r = q = 0 on Σ,
w(0) = y0, z(T ) = 0, r(0) = θ0, q(T ) = 0 in Ω,

(1.4)

that is, we look for a control v ∈ L2(ω× (0, T ))N , with vi ≡ 0 for a given i ∈ {1, . . . , N −1},
such that z(0) = 0 and q(0) = 0 in Ω. Indeed, for every ŷ0 ∈ L2(Ω)N and every θ̂0 ∈ L2(Ω)
we have

∂Jτ (y, θ)

∂τ

∣∣∣∣
τ=0

=

∫∫
O×(0,T )

(
w · yτ + r θτ

)
dx dt, (1.5)

where w := y|τ=0, r := θ|τ=0, yτ :=
∂y

∂τ |τ=0
and θτ :=

∂θ

∂τ |τ=0
. In fact, (yτ , θτ ) is the
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solution of
yτt −∆yτ + (yτ · ∇)w + (w · ∇)yτ +∇pτ = θτeN , ∇ · yτ = 0 in Q,
θτt −∆θτ + (yτ · ∇)r + (w · ∇)θτ = 0 in Q,
yτ = 0, θτ = 0 on Σ,

yτ (0) = ŷ0, θτ (0) = θ̂0 in Ω.

Using (1.4)-(1.5), we find that

∂Jτ (y, θ)

∂τ

∣∣∣∣
τ=0

=

∫
Ω

(
z(0) · ŷ0 + q(0)θ̂0

)
dx

for all (ŷ0, θ̂0) ∈ L2(Ω)N+1 such that ‖ŷ0‖L2(Ω)N = ‖θ̂0‖L2(Ω)N = 1, from where we can
conclude.

The null controllability of system (1.4) is the main result of this paper.

Theorem 1.1. Let i ∈ {1, . . . , N − 1} and m ≥ 10 be a real number. Assume that ω ∩
O1 6= ∅, y0 ≡ 0 and θ0 ≡ 0. Then, there exist δ > 0 and C > 0, depending on
ω, Ω, O1, O2 and T , such that for any f ∈ L2(Q)N and any f0 ∈ L2(Q) satisfying
‖eC/tm(f, f0)‖L2(Q)N+1 < δ, there exists a control v ∈ L2(Q)N with vi ≡ 0 such that the
corresponding solution (w, z, r, q, v) to (1.4) satisfies z(0) = 0 and q(0) = 0 in Ω.

Remark 1.2. A related problem to the null controllability of (1.4) is the usual null con-
trollability of (1.1) (with τ = 0, f ≡ 0 and f0 ≡ 0). Our method does not seem to allow to
give a positive answer to this problem when no control is acting on the heat equation, even
if we do not seek to remove one of the components of the control in the fluid equation (see
[9, Remark 3]). Therefore, it is quite surprising that for system (1.4) a result of this kind
can be obtained.

In the case N = 2, the controllability result of Theorem 1.1 is optimal in the sense that we
are able to consider only one scalar control. It is natural to ask if, in the case N = 3, a result
of this type can be achieved with just one controlled equation. Unfortunately, the method
used here does not provide an answer to this question. However, one could try to adapt
the arguments used in [14], where the authors proved the local null controllability of the 3-
dimensional Navier-Stokes system by means of a control having two vanishing components
using Coron’s return method [13]. Of course, this is a more difficult problem since the
number of equations in (1.4) is much higher than the ones in [14].

As a corollary of Theorem 1.1, we obtain the existence of insensitizing controls for the
Boussinesq system (1.1):

Corollary 1.3. Under the hypothesis of Theorem 1.1, there exist insensitizing controls for
the functional (1.2) with no control in the temperature equation in (1.1). Furthermore, this
control can be chosen to have the i-th component equal to zero, as long as i 6= N .

Our method of proof does not allow to drop the assumption ω∩O1 6= ∅. However, it has
been proved in [21] that this is not a necessary condition for ε-insensitivity to hold for some
parabolic equations (see also [26]). In this subject, it has been discovered in [4] that new
phenomena arises in parabolic systems where the control and coupling sets do not meet. In
particular, there exists a minimal time of controllability depending on the location of these
sets. Therefore, condition ω ∩ O1 6= ∅ seems natural for controllability in arbitrary time
T > 0. We refer to [2, 3] for controllability results concerning this geometric condition in
the context of hyperbolic systems.

The hypothesis on the initial conditions is related to the fact that we deal with a system
that mixes forward and backward equations. Even for the simpler case of the heat equation,
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it is a hard task to characterize the initial conditions that can be insensitized. In [28]
and [29], the authors analyze the initial data that can or cannot be insensitized under
different configurations of the observatory and control sets.

Thus, we concentrate in proving Theorem 1.1. The strategy is classical: first, we study
the null controllability of the linearized system around zero:

wt −∆w +∇p0 = fw + v1ω + r eN , ∇ · w = 0 in Q,
−zt −∆z +∇p1 = fz + w1O1

, ∇ · z = 0 in Q,
rt −∆r = fr in Q,
−qt −∆q = fq + zN + r 1O2

in Q,
w = z = 0, r = q = 0 on Σ,
w(0) = y0, z(T ) = 0, r(0) = θ0, q(T ) = 0 in Ω,

(1.6)

where fw, fz, fr and fq will be taken to decrease exponentially to zero at t = 0, and then
we go back to the nonlinear problem by means of an inverse mapping theorem. The null
controllability of (1.6) is to be understood in the sense of Theorem 1.1. The main tool to
achieve the null controllability of (1.6), and the second main result of this paper (Proposition
3.2), is an observability inequality like∫∫

Q

e−C0/t
m

(|ϕ|2 + |ψ|2 + |φ|2 + |σ|2) dxdt ≤ C
∥∥e−C1/2t

m

(gϕ, gψ, gφ, gσ)
∥∥2

X

+ C

∫∫
ω×(0,T )

e−C1/t
m(

(N − 2)|ϕj |2 + |ϕN |2
)

dx dt, (1.7)

with j ∈ {1, . . . , N − 1} \ {i}, for the solutions of the adjoint equation with source terms:

−ϕt −∆ϕ+∇π1 = gϕ + ψ 1O1 , ∇ · ϕ = 0 in Q,
ψt −∆ψ +∇π2 = gψ + σeN , ∇ · ψ = 0 in Q,
−φt −∆φ = gφ + ϕN + σ 1O2 in Q,
σt −∆σ = gσ in Q,
ϕ = ψ = 0, φ = σ = 0 on Σ,
ϕ(T ) = 0, ψ(0) = ψ0, φ(T ) = 0, σ(0) = σ0 in Ω.

(1.8)

Here ψ0 ∈ H, σ0 ∈ L2(Ω), X is an appropriate Banach space and 2C1 > C0.
There are some remarks to be made about inequality (1.7). Notice that are not local

terms of φ present in the right-hand side, which is the main difference with the result obtained
in [11] (see inequality (1.7) in that reference). Actually, if there were such local terms, it
would not be possible to estimate them since φ does not interact as a right-hand side with the
other equations. Therefore, we need a new approach to manipulate the equations in (1.8).
In particular, we take advantage of φ(T ) ≡ 0 and energy estimates to have a weighted global
integral of φ in the right-hand side of (1.7) without adding terms in ω.

In consequence, we are not able to remove the local term of ϕN using the equation
satisfied by φ and, therefore, the N -th component of v in (1.6) is kept. In fact, the role of
vN is to control the effects coming from the equation of r, which is not directly controlled,
and acts precisely on the N -th equation of w through the coupling reN . To know that if vN
can be disregarded from (1.6) and still have null controllability remains an open question.

The paper is organized like this: in Section 2, we introduce some notation and previous
results that are used later on. Section 3 is dedicated to prove (1.7). In Sections 4 and 5 we
prove the null controllability results for systems (1.6) and (1.1), respectively.
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2 Technical results and notations

2.1 Some notations

We denote by X0 := L2(Q) and Y0 := L2(0, T ;H). For n a positive integer we define the
spaces Xn and Yn as follows:

Xn := L2(0, T ;H2n(Ω) ∩H1
0 (Ω)) ∩Hn(0, T ;L2(Ω)),

Yn := L2(0, T ;H2n(Ω)N ∩ V ) ∩Hn(0, T ;L2(Ω)N ),

endowed with the norms

‖u‖2Xn
:= ‖u‖2L2(0,T ;H2n(Ω)) + ‖u‖2Hn(0,T ;L2(Ω))

and
‖u‖2Yn

:= ‖u‖2L2(0,T ;H2n(Ω)N ) + ‖u‖2Hn(0,T ;L2(Ω)N ),

respectively.
The following subspaces will be useful (see Section 4). First, for every positive integer n,

we set
Xn,0 := {u ∈ Xn : [Lku]|Σ = 0, [Lku](0) = 0, k = 0, . . . , n− 1},

endowed with the equivalent norm (see Lemma 2.3 below),

‖u‖Xn,0
:= ‖Lnu‖L2(Q)

where we have denoted
L := ∂t −∆.

Next, let
Y1,0 := {u ∈ Y1 : u(0) = 0}

and

Y2,0 := {u ∈ Y1,0 ∩ L2(0, T ;H4(Ω)N ) ∩H2(0, T ;L2(Ω)N ) : (LHu)|Σ = 0, (LHu)(0) = 0}

endowed with the equivalent norm (see Lemma 2.4 below)

‖u‖Yn,0 := ‖LnHu‖L2(Q)N , n = 1, 2.

Here, LH := ∂t − PL(∆), where PL denotes the Leray projector over the space H, i.e
PL : L2(Q)N → L2(Q)N , PLu = u −∇p, where ∆p = ∇ · u in Ω and ∇p · ~n = u · ~n on ∂Ω
(see [27, pages 16-18]).

2.2 Carleman estimates

Let ω0 be a nonempty open subset of RN such that ω0 b ω ∩ O1 and η ∈ C8(Ω) such that

|∇η| > 0 in Ω \ ω0, η > 0 in Ω and η ≡ 0 on ∂Ω.

The existence of such a function η is given in [15].
We consider the following weight functions as in [11]:

α(x, t) :=
e2λ‖η‖∞ − eλη(x)

`(t)m
, ξ(x, t) :=

eλη(x)

`(t)m
,

α∗(t) := max
x∈Ω

α(x, t), ξ∗(t) := min
x∈Ω

ξ(x, t),

α̂(t) := min
x∈Ω

α(x, t), ξ̂(t) := max
x∈Ω

ξ(x, t),

(2.1)
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where λ ≥ 1, m ≥ 10 and ` ∈ C∞([0, T ]) is a positive function in (0, T ) satisfying

`(t) = t ∀ t ∈ [0, T/4], `(t) = T − t ∀ t ∈ [3T/4, T ],

`(t) ≤ `(T/2), ∀ t ∈ [0, T ].

Notice that from (2.1), we obtain the following properties:

|∂nt α|, |∂nt ξ| ≤ Cξ(1+n/m), |∂lxα|, |∂lxξ| ≤ Cξ (2.2)

where n is any nonnegative integer, l ∈ NN and

e−asα
∗
(ξ∗)c ≤ C, (2.3)

for any a > 0 and c ∈ R. In (2.2) and (2.3), C > 0 is a constant only depending on Ω, λ, η,
`, l, a and c. These properties are also valid if we replace (α, ξ) by (α∗, ξ∗).

The first result is a Carleman inequality proved in [11]. More precisely it corresponds to
estimate (3.10) in Paragraph 3.1.3 of that reference.

Lemma 2.1. Let ω,O ⊂ Ω and assume ω ∩ O 6= ∅. Then, there exists a constant λ̂0 > 0
such that for any λ ≥ λ̂0, there exists C > 0 depending only on λ, Ω, ω, η and ` such that
for any j ∈ {1, . . . , N − 1}, any gϕ ∈ Y0, any gψ ∈ Y2, any g ∈ X2 and any ψ0 ∈ H, the
solution of 

−ϕt −∆ϕ+∇π1 = gϕ + ψ 1O, ∇ · ϕ = 0 in Q,
ψt −∆ψ +∇π2 = gψ + g eN , ∇ · ψ = 0 in Q,
ϕ = ψ = 0 on Σ,
ϕ(T ) = 0, ψ(0) = ψ0 in Ω,

(2.4)

satisfies

s4

∫∫
Q

e−11sα∗(ξ∗)4|ϕ|2 dxdt+ s5

∫∫
Q

e−9sα∗(ξ∗)5|ψ|2 dx dt

≤ C
∥∥s9/2e−9/2sαξ9/2 gϕ

∥∥2

Y0
+ C

∥∥e−7/2sα∗ gψ
∥∥2

Y2
+ C

∥∥s1/2e−4sα∗(ξ∗)1/2−2/m g
∥∥2

X2

+ Cs13

∫∫
ω0×(0,T )

e−9sαξ13
(
(N − 2)|ϕj |2 + |ϕN |2

)
dxdt. (2.5)

for every s ≥ C.

To prove (2.5) it suffices to combine a Carleman estimate for ϕ with local terms of ϕj
and ϕN (see for instance [10, Proposition 2.1] and [11, Lemma 2.1]), and a Carleman estimate
for ψ with local terms of ∆ψj and ∆ψN (see for instance [12, Proposition 3.2] and [11,
Lemma 2.3]). Then, we can use the coupling in the first equation of (2.4) to eliminate the
local terms of ψ. Namely, we use that

∆ψk = −(∆ϕk)t −∆2ϕk + ∂k∇ · gϕ −∆gϕk in (0, T )×O, k = j,N.

More details can be found in [11, section 3.1.3].
The next result is a special Carleman estimate for the solutions of the heat equation with

D(·) := [∂2
1 + (N − 2)∂2

2 ](·) (2.6)

as local term.
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Lemma 2.2. There exists a constant λ̂1 > 0 such that for any λ ≥ λ̂1, there exists C > 0
depending only on λ, Ω, ω, η and ` such that for any g ∈ X3 and any u0 ∈ L2(Ω), the
solution u of  ut −∆u = g in Q,

u = 0 on Σ,
u(0) = u0 in Ω,

(2.7)

satisfies

I(u) ≤ C
∥∥e−7/2sα∗g

∥∥2

X3
+ Cs5

∫∫
ω0×(0,T )

e−8sαξ5|Du|2 dxdt, (2.8)

for every s ≥ C, where

I(u) :=

∫∫
Q

e−8sα(s−1ξ−1|∇3Du|2 + sξ|∇2Du|2 + s3ξ3|∇Du|2 + s5ξ5|Du|2) dxdt

+ s5

∫∫
Q

e−8sα∗(ξ∗)5|u|2 dxdt+

4∑
k=1

∥∥s5/2−ke−4sα∗(ξ∗)5/2−k−k/mu
∥∥2

Xk
.

(2.9)

Estimate (2.8) is entirely proved in [11, section 3.3.2] (inequality (3.22)). Let us give
the guidelines of the proof. We start by applying the operator ∇∇D to equation (2.7) and
then use a Carleman estimate with non homogeneous boundary conditions, namely, the
one proved in [20] (see also [10, Lemma 2.2]). Then, we use regularity results for the heat
equation to estimate the boundary terms. Actually, it would suffice to assume g ∈ X2, but
for later purposes we need further regularity. Finally, we can recover the L2-norm using∫

Ω

(
|∂1u|2 + (N − 2)|∂2u|2

)
dx = −

∫
Ω

uDudx,

together with Poincaré’s and Young’s inequalities.

2.3 Regularity results

Here, we state some regularity results concerning the heat and Stokes equations, respectively.
The first one is (see for instance [23, Chapter 4])

Lemma 2.3. For every T > 0 and every g ∈ Xn (n any nonnegative integer), there exists a
unique solution u ∈ Xn+1 to the heat equation (2.7) with u0 ≡ 0 and there exists a constant
C > 0 depending only on Ω such that

‖u‖Xn+1
≤ C ‖g‖Xn

. (2.10)

The second one can be found in [22, Theorem 6, pages 100-101] (see also [27])

Lemma 2.4. For every T > 0, every u0 ∈ V and every g ∈ L2(Q)N , there exists a unique
solution

u ∈ L2(0, T ;H2(Ω)N ) ∩H1(0, T ;H) ∩ L∞(0, T ;V )

to the Stokes system  ut −∆u+∇p = g, ∇ · u = 0 in Q,
u = 0 on Σ,
u(0) = u0 in Ω,
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for some p ∈ L2(0, T ;H1(Ω)), and there exists a constant C > 0 depending only on Ω such
that

‖u‖2L2(0,T ;H2(Ω)N ) + ‖u‖2H1(0,T ;L2(Ω)N ) + ‖u‖2L∞(0,T ;V ) ≤ C
(
‖g‖2L2(Q)N +

∥∥u0
∥∥2

V

)
. (2.11)

Moreover, if g ∈ L2(0, T ;H2(Ω)N ) ∩ H1(0, T ;L2(Ω)N ) and u0 ∈ H3(Ω)N ∩ V satisfy the
compatibility condition:

∇p̄ = ∆u0 + g(0) on ∂Ω,

where p̄ is any solution of the Neumann boundary-value problem{
∆p̄ = ∇ · g(0) in Q,
∂p̄

∂n
= ∆u0 · n+ g(0) · n on Σ,

then u ∈ Y2 and there exists a constant C > 0 depending only on Ω such that

‖u‖2Y2
≤ C

(
‖g‖2Y1

+
∥∥u0
∥∥2

H3(Ω)

)
. (2.12)

3 Carleman estimate

In this section we prove a Carleman inequality for system (1.8). To do this, we proceed in
two steps. First, we prove a Carleman estimate for the equations in (1.8) not involving φ,
with a local term as in (1.7). Next, we incorporate the weighted norm of φ to the previous
inequality, provided that we change the weight functions.

3.1 Carleman estimate without φ

In this section we will first prove a Carleman estimate concerning ϕ, ψ and σ.

Proposition 3.1. Assume ω ∩ O1 6= ∅. Then, there exists a constant λ̂3 > 0 such that
for any λ ≥ λ̂3, there exists C > 0 depending only on λ, Ω, ω, η and ` such that for
any j ∈ {1, . . . , N − 1}, any gϕ ∈ Y0, any gψ ∈ Y2, any gσ ∈ X3, any ψ0 ∈ H and any
σ0 ∈ L2(Ω), the solution of (1.8) satisfies

s4

∫∫
Q

e−11sα∗(ξ∗)4|ϕ|2 dxdt+s5

∫∫
Q

e−9sα∗(ξ∗)5|ψ|2 dxdt+s5

∫∫
Q

e−8sα∗(ξ∗)5|σ|2 dxdt

≤ Cs15

∫∫
Q

e−16sα+8sα∗ξ18|gϕ|2 dxdt+ C
∥∥e−7/2sα∗ gψ

∥∥2

Y2
+ C

∥∥e−7/2sα∗gσ
∥∥2

X3

+ Cs19

∫∫
ω×(0,T )

e−16sα+8sα∗ξ22((N − 2)|ϕj |2 + |ϕN |2) dxdt, (3.1)

for every s ≥ C.

Proof. We start by applying the Lemma 2.1 with O = O1 and g = σ:

s4

∫∫
Q

e−11sα∗(ξ∗)4|ϕ|2 dxdt+ s5

∫∫
Q

e−9sα∗(ξ∗)5|ψ|2 dxdt

≤ C
∥∥s9/2e−9/2sαξ9/2 gϕ

∥∥2

Y0
+ C

∥∥e−7/2sα∗ gψ
∥∥2

Y2

+C
∥∥s1/2e−4sα∗(ξ∗)1/2−2/m σ

∥∥2

X2
+Cs13

∫∫
ω0×(0,T )

e−9sαξ13((N − 2)|ϕj |2 + |ϕN |2) dxdt.

(3.2)
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The idea now is to combine this inequality with (2.8) applied to the equation satisfied
by σ. Indeed, we set u = σ and g = gσ in Lemma 2.2. We have

I(σ) ≤ C
∥∥e−7/2sα∗gσ

∥∥2

X3
+ C0s

5

∫∫
ω0×(0,T )

e−8sαξ5|Dσ|2 dxdt, (3.3)

for every s ≥ C. Recall that I(σ) is given by (2.9) and Dσ :=
[
∂2

1 + (N − 2)∂2
2

]
σ. On the

other hand, notice that from the equations in (1.8) we have

∆π1 = ∇ · gϕ in O1 × (0, T )

and
∆π2 = ∇ · gψ + ∂Nσ in Q.

Then, we can obtain the following relation between σ and ϕN in the set (ω0 ∩O1)× (0, T ):

Dσ = [−∆∂2
t +∆3]ϕN−(∆gϕN )t+∆2gϕN+(∂N∇·gϕ)t−∆(∂N∇·gϕ)−∆gψN+∂N∇·gψ. (3.4)

Next, we take ω0 b ω′ b (O1 ∩ ω) and ζ(x) ∈ C8
0(ω′) such that 0 ≤ ζ ≤ 1 and ζ|ω0

≡ 1,
and using (3.4) we have

s5

∫∫
ω0×(0,T )

e−8sαξ5|Dσ|2 dx dt ≤ s5

∫∫
ω′×(0,T )

ζ(x)e−8sαξ5Dσ
([
−∆∂2

t + ∆3
]
ϕN
)

dxdt

+ s5

∫∫
ω′×(0,T )

ζ(x)e−8sαξ5Dσ
(
− (∆gϕN )t + ∆2gϕN + (∂N∇ · gϕ)t −∆(∂N∇ · gϕ)

)
dx dt

+ s5

∫∫
ω′×(0,T )

ζ(x)e−8sαξ5Dσ
(
−∆gψN + ∂N∇ · gψ

)
dxdt.

Let us call by A1, A2 and A3 the integrals in the right-hand side, respectively. Integrating
by parts and using m ≥ 10 and Young’s inequality, we obtain

|A1| ≤
1

6C0
I(σ) + Cs19

∫∫
ω′×(0,T )

e−16sα+8sα∗ξ22|ϕN |2 dxdt,

|A2| ≤
1

6C0
I(σ) + Cs15

∫∫
Q

e−16sα+8sα∗ξ18|gϕ|2 dxdt,

|A3| ≤
1

6C0
I(σ) + Cs11

∫∫
Q

e−16sα+8sα∗ξ14|gψ|2 dxdt,

where C0 is the constant appearing in (3.3). Notice that the assumption gσ ∈ X3 comes
into play when estimating |A1|. Putting these estimates together, we get

s5

∫∫
ω0×(0,T )

e−8sαξ5|Dσ|2 dx dt ≤ 1

2C0
I(σ) + Cs19

∫∫
ω′×(0,T )

e−16sα+8sα∗ξ22|ϕN |2 dxdt

+ Cs15

∫∫
Q

e−16sα+8sα∗ξ18|gϕ|2 dx dt+ Cs11

∫∫
Q

e−16sα+8sα∗ξ14|gψ|2 dx dt. (3.5)

Combining (3.3) and (3.5), and then with (3.2) we obtain

s4

∫∫
Q

e−11sα∗(ξ∗)4|ϕ|2 dxdt+s5

∫∫
Q

e−9sα∗(ξ∗)5|ψ|2 dxdt+s5

∫∫
Q

e−8sα∗(ξ∗)5|σ|2 dxdt

≤ Cs15

∫∫
Q

e−16sα+8sα∗ξ18|gϕ|2 dxdt+ C
∥∥e−7/2sα∗ gψ

∥∥2

Y2
+ C

∥∥e−7/2sα∗gσ
∥∥2

X3

+(N−2)Cs13

∫∫
ω0×(0,T )

e−9sα∗ξ13|ϕj |2 dxdt+Cs19

∫∫
ω′×(0,T )

e−16sα+8sα∗ξ22|ϕN |2 dxdt.
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From this we get in particular (3.1).

3.2 Carleman estimate involving φ

To prove (1.7) we would usually apply a Carleman inequality for φ, but this would make
appear a local term of φ. Since φ is not coupled with the other equations, it can not be easily,
at least at first sight, estimated by the other variables. However, we will take advantage of
the homogeneous initial condition to finish the proof of (1.7).

First, we will deduce a Carleman inequality with weights similar as those in (2.1), but
such that they are not decreasing in time and do not vanish in t = T . To this end, we define

β(x, t) :=
e2λ‖η‖∞ − eλη(x)˜̀(t)m , γ(x, t) :=

eλη(x)˜̀(t)m ,

β∗(t) := max
x∈Ω

α(x, t), γ∗(t) = min
x∈Ω

γ(x, t),

β̂(t) := min
x∈Ω

β(x, t), γ̂(t) := max
x∈Ω

γ(x, t),

where ˜̀(t) =

{
`(t) 0 ≤ t ≤ T/2,
‖`‖∞ T/2 < t ≤ T.

Notice that properties (2.2) and (2.3) are still valid for these weights.
Using energy estimates and ϕ(T ) = 0, we can show from (3.1) that∫∫
Q

e−11sβ∗(γ∗)4|ϕ|2 dx dt+

∫∫
Q

e−9sβ∗(γ∗)5|ψ|2 dxdt+

∫∫
Q

e−8sβ∗(γ∗)5|σ|2 dxdt

≤ C
∥∥e−7/2sβ∗ gϕ

∥∥2

Y0
+ C

∥∥e−7/2sβ∗ gψ
∥∥2

Y2
+ C

∥∥e−7/2sβ∗gσ
∥∥2

X3

+ C

∫∫
ω×(0,T )

e−16sβ̂+8sβ∗ γ̂22
(
(N − 2)|ϕj |2 + |ϕN |2

)
dxdt. (3.6)

We refer to [10, section 3] or [9, section 3] for a detailed proof of (3.6).
Now we are ready to state the following

Proposition 3.2. Assume ω ∩ O1 6= ∅. Then, there exists a constant λ̂4 > 0 such that
for any λ ≥ λ̂4, there exists C > 0 depending only on λ, Ω, ω, η and ` such that for
any j ∈ {1, . . . , N − 1}, any gϕ ∈ Y0, any gψ ∈ Y2, any, gφ ∈ X0, any gσ ∈ X3, any ψ0 ∈ H
and any σ0 ∈ L2(Ω), the solution of (1.8) satisfies∫∫

Q

e−11sβ∗(γ∗)4|ϕ|2 dx dt+

∫∫
Q

e−9sβ∗(γ∗)5|ψ|2 dxdt+

∫∫
Q

e−11sβ∗ |φ|2 dxdt

+

∫∫
Q

e−8sβ∗(γ∗)5|σ|2 dxdt ≤ C
∫∫

ω×(0,T )

e−16sβ̂+8sβ∗ γ̂22
(
(N − 2)|ϕj |2 + |ϕN |2

)
dx dt

+ C
∥∥e−7/2sβ∗ gϕ

∥∥2

Y0
+ C

∥∥e−7/2sβ∗ gψ
∥∥2

Y2
+ C

∥∥e−11/2sβ∗gφ
∥∥2

X0
+ C

∥∥e−7/2sβ∗gσ
∥∥2

X3
, (3.7)

for every s ≥ C.

Proof. Let ρ(t) := e−11/2sβ∗ . We can easily check that ρφ satisfies the equation: −(ρφ)t −∆(ρφ) = ρ gφ + ρϕN + ρ σ1O2
− ρ′φ in Q,

ρφ = 0 on Σ,
(ρφ)(T ) = 0 in Ω.
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We multiply this equation by ρ φ and integrate over Ω. We get

− 1

2

d

dt

∫
Ω

ρ2|φ|2 dx+

∫
Ω

ρ2|∇φ|2 dx

=

∫
Ω

ρ2gφ φ dx+

∫
Ω

ρ2ϕN φ dx+

∫
Ω

ρ2σ φ1O2
dx−

∫
Ω

ρ′ρ|φ|2 dx.

Since ρ is a positive and non-decreasing function we have ρ′ρ ≥ 0 and thus

−1

2

d

dt

∫
Ω

ρ2|φ|2 dx+

∫
Ω

ρ2|∇φ|2 dx ≤
∫

Ω

ρ2gφ φdx+

∫
Ω

ρ2ϕN φdx+

∫
Ω

ρ2σ φ1O2
dx,

and after using Poincaré’s and Young’s inequalities we obtain

−1

2

d

dt

∫
Ω

ρ2|φ|2 dx+
1

2

∫
Ω

ρ2|∇φ|2 dx ≤ C
∫

Ω

ρ2|gφ|2 dx+C

∫
Ω

ρ2|ϕN |2 dx+C

∫
Ω

ρ2|σ|2 dx.

Integrating in time, we find that∫∫
Q

ρ2|φ|2 dxdt ≤ C
∫∫

Q

ρ2|gφ|2 dx+ C

∫∫
Q

ρ2|ϕN |2 dxdt+ C

∫∫
Q

ρ2|σ|2 dxdt,

where we have also used that φ(T ) = 0, which is essential to obtain the previous estimate.
This, together with (3.6), leads to (3.7).

4 Null controllability of the linear system

In this section we deal with the null controllability of the linear system

Lw +∇p0 = fw + v1ω + r eN , ∇ · w = 0 in Q,
L∗z +∇p1 = fz + w1O1

, ∇ · z = 0 in Q,
Lr = fr in Q,
L∗q = fq + zN + r 1O2 in Q,
w = z = 0, r = q = 0 on Σ,
w(0) = 0, z(T ) = 0, r(0) = 0, q(T ) = 0 in Ω,

(4.1)

that is, for a given i ∈ {1, . . . , N−1}, we will prove the existence of a solution (w, p0, z, p1, r, q, v)
of (4.1), with vi ≡ 0, such that z(0) = 0 and q(0) = 0 in Ω. Here, we have use the notation
L∗ := −∂t −∆, the formal adjoint of the parabolic operator L defined in Section 2.1.

Let us first state an observability inequality from (3.7) which will make things easier and
clearer in what is to come.

Lemma 4.1. Let j ∈ {1, . . . , N − 1} and let gϕ, gφ, s and λ be like in Proposition 3.2.
Furthermore, assume that gψ ∈ Y2,0 and gσ ∈ X3,0. Then, there exists a constant C > 0
(depending on s and λ) such that every solution (ϕ, π1, ψ, π2, φ, σ) of (1.8) satisfies∫∫

Q

e−12sβ∗
(
|ϕ|2+|ψ|2+|φ|2+|σ|2

)
dx dt ≤ C

∫∫
ω×(0,T )

e−7sβ∗
(
(N−2)|ϕj |2+|ϕN |2

)
dxdt

+ C
∥∥e−7/2sβ∗gϕ

∥∥2

Y0
+ C

∥∥e−7/2sβ∗gψ
∥∥2

Y2,0
+ C

∥∥e−7/2sβ∗gφ
∥∥2

X0
+ C

∥∥e−7/2sβ∗gσ
∥∥2

X3,0
. (4.2)

Inequality (4.2) is obtained directly from the properties of the weight functions and the
equivalence between norms mentioned in Section 2.1.
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The rest of the section goes as in [11]. The idea is to look for a solution in an appropriate
weighted functional space. To this end, we introduce, for i ∈ {1, . . . , N − 1}, the spaces

Ei = {(w, p0, z, p1, r, q, v) : e7/2sβ∗v1ω ∈ L2(Q)N , vi ≡ 0,

e7/2sβ∗(γ∗)−1−1/mw ∈ Y1, e7/2sβ∗(γ∗)−6−6/mz ∈ Y1, z(T ) = 0,

e7/2sβ∗(γ∗)−1−1/mr ∈ X1, e7/2sβ∗(γ∗)−11−11/mq ∈ X1, q(T ) = 0,

e6sβ∗ (Lw +∇p0 − v1ω − r eN , L∗z +∇p1 − w1O1) ∈ L2(Q)2N ,

e6sβ∗ (Lr, L∗q − zN − r1O2
) ∈ L2(Q)2}.

It is clear that Ei is a Banach space endowed with its natural norm.

Proposition 4.2. Assume the hypothesis of Lemma 4.1, i ∈ {1, . . . , N − 1} and

e6sβ∗(fw, fz, fr, fq) ∈ L2(Q)2N+2. (4.3)

Then, we can find a control v ∈ L2(Q)N such that the associated solution (w, p0, z, p1, r, q)
to (4.1) satisfies (w, p0, z, p1, r, q, v) ∈ Ei. In particular, vi ≡ 0 and (z(0), q(0)) = (0, 0)
in Ω.

Proof. The proof follows the same strategy used in [11], although the arguments were
introduced in [15] and [19]. However, we include the proof for the sake of complete-
ness. See [14] for a proof in a more general framework. Let P0 be the space of functions
(ϕ, π1, ψ, π2, φ, σ) ∈ C∞(Q)2N+4 such that

• ∇ · ϕ = ∇ · ψ = 0,

• ϕ|Σ = ψ|Σ = 0, φ|Σ = σ|Σ = 0,

• ϕ(T ) = ψ(0) = 0, φ(T ) = σ(0) = 0,

•
∫

Ω

π1 dx =

∫
Ω

π2 dx = 0,

• ∇ · (Lψ +∇π2 − σ eN ) = 0,

•
(
LkH [e−7/2sβ∗(Lψ +∇π2 − σ eN )]

)
|Σ = 0, k = 0, 1,

•
(
LkH [e−7/2sβ∗(Lψ +∇π2 − σ eN )]

)
(0) = 0, k = 0, 1,

• Lk[e−7/2sβ∗Lσ]|Σ = 0, k = 0, 1, 2,

• Lk[e−7/2sβ∗Lσ](0) = 0, k = 0, 1, 2.

We define the bilinear form

a
(
(ϕ̃, π̃1, ψ̃, π̃2, φ̃, σ̃), (ϕ, π1, ψ, π2, φ, σ)

)
:=

∫∫
Q

e−7sβ∗(L∗ϕ̃+∇π̃1 − ψ̃1O1
) · (L∗ϕ+∇π1 − ψ1O1

) dx dt

+

∫∫
Q

L2
H [e−7/2sβ∗(Lψ̃ +∇π̃2 − σ̃ eN )] · L2

H [e−7/2sβ∗(Lψ +∇π2 − σ eN )] dxdt

+

∫∫
Q

e−7sβ∗(L∗φ̃− ϕ̃N − σ̃ 1O2
)(L∗φ− ϕN − σ 1O2

) dxdt
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+

∫∫
Q

L3[e−7/2sβ∗Lσ̃]L3[e−7/2sβ∗Lσ] dxdt

+

∫∫
ω×(0,T )

e−7sβ∗
(
(N − 2)ϕ̃j ϕj + ϕ̃N ϕN

)
dxdt,

where j ∈ {1, . . . , N − 1} \ {i} and a linear form

〈G, (ϕ, π1, ψ, π2, φ, σ)〉 :=

∫∫
Q

fw·ϕ dxdt+

∫∫
Q

fz ·ψ dxdt+

∫∫
Q

fr φ dx dt+

∫∫
Q

fq σ dx dt.

Thanks to (4.2), we have that a(·, ·) : P0 × P0 7→ R is a symmetric, definite positive
bilinear form on P0. We denote by P the completion of P0 for the norm induced by a(·, ·).
Then, a(·, ·) is well-defined, continuous and definite positive on P . Furthermore, in view of
the Carleman estimate (4.2) and the assumptions (4.3), the linear form (ϕ, π1, ψ, π2, φ, σ) 7→
〈G, (ϕ, π1, ψ, π2, φ, σ)〉 is well-defined and continuous on P . Hence, from Lax-Milgram’s
lemma, we deduce that the variational problem:{

Find (ϕ̃, π̃1, ψ̃, π̃2, φ̃, σ̃) ∈ P such that, ∀ (ϕ, π1, ψ, π2, φ, σ) ∈ P,
a
(
(ϕ̃, π̃1, ψ̃, π̃2, φ̃, σ̃), (ϕ, π1, ψ, π2, φ, σ)

)
= 〈G, (ϕ, π1, ψ, π2, φ, σ)〉,

(4.4)

possesses a unique solution (ϕ̂, π̂1, ψ̂, π̂2, φ̂, σ̂).
We define v̂ by {

v̂k := −e−7sβ∗ ϕ̂k1ω, k 6= i, v̂i ≡ 0 in Q. (4.5)

It is readily checked from (4.4) and (4.5) that∫∫
Q

(
|w̃|2 + |z̃|2 + |r̃|2 + |q̃|2

)
dx dt

+

∫∫
ω×(0,T )

e7sβ∗
(
(N − 2)|v̂j |2 + |v̂N |2

)
dxdt < +∞,

(4.6)

where we have denoted w̃, z̃, r̃ and q̃ by
w̃ := e−7/2sβ∗(L∗ϕ̂+∇π̂1 − ψ̂1O1

),

z̃ := L2
H [e−7/2sβ∗(Lψ̂ +∇π̂2 − σ̂ eN )],

r̃ := e−7/2sβ∗(L∗φ̂− ϕ̂N − σ̂ 1O2
),

q̃ := L3[e−7/2sβ∗Lσ̂].

(4.7)

Now, we take (ŵ, ẑ, r̂, q̂), together with some pressures (p̂0, p̂1), to be the (weak) solution
of (4.1) with v = v̂, i.e., they verify

Lŵ +∇p̂0 = fw + v̂1ω + r̂ eN , ∇ · ŵ = 0 in Q,
L∗ẑ +∇p̂1 = fz + ŵ1O1 , ∇ · ẑ = 0 in Q,
Lr̂ = fr in Q,
L∗q̂ = fq + ẑN + r̂ 1O2

in Q,
ŵ = ẑ = 0, r̂ = q̂ = 0 on Σ,
ŵ(0) = 0, ẑ(T ) = 0, r̂(0) = 0, q̂(T ) = 0 in Ω.

(4.8)

Notice that (ŵ, p̂0, ẑ, p̂1, r̂, q̂) is well defined by Lemmas 2.3 and 2.4 since v̂ ∈ L2(Q)N

(by (4.5)-(4.6)) and (4.3).
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In the following, we will prove the following exponential decay properties

e7/2sβ∗(γ∗)−1−1/mŵ ∈ Y1, e7/2sβ∗(γ∗)−6−6/mẑ ∈ Y1

e7/2sβ∗(γ∗)−1−1/mr̂ ∈ X1, e7/2sβ∗(γ∗)−11−11/mq̂ ∈ X1,
(4.9)

which will complete the proof of Proposition 4.2.
First, let us prove that (w̃, z̃, r̃, q̃) defined in (4.7) is actually the solution (in the sense

of transposition) of 
e−7/2sβ∗w̃ = ŵ in Q,

e−7/2sβ∗(L∗H)2z̃ = ẑ, ∇ · z̃ = 0 in Q,

e−7/2sβ∗ r̃ = r̂ in Q,

e−7/2sβ∗(L∗)3q̃ = q̂ in Q,

(4.10)

such that 
(L∗H)`z̃ = 0 on Σ, ` = 0, 1,
(L∗H)`z̃(T ) = 0 in Ω, ` = 0, 1,
(L∗)kq̃ = 0 on Σ, k = 0, . . . , 2,
(L∗)kq̃(T ) = 0 in Ω, k = 0, . . . , 2.

(4.11)

Indeed, from (4.4) for every (ϕ, π1, ψ, π2, φ, σ) ∈ P0 we obtain the following:∫∫
Q

w̃ · e−7/2sβ∗(L∗ϕ+∇π1 − ψ1O1
) dxdt+

∫∫
Q

z̃ · L2
H [e−7/2sβ∗(Lψ +∇π2 − σ eN )] dxdt

+

∫∫
Q

r̃ e−7/2sβ∗(L∗φ− ϕN − σ 1O2
) dxdt+

∫∫
Q

q̃L3[e−7/2sβ∗Lσ] dx dt

=

∫∫
Q

ϕ · (Lŵ +∇p̂0 − r̂ eN ) dxdt+

∫∫
Q

ψ · (L∗ẑ +∇p̂1 − ŵ1O1
) dxdt

+

∫∫
Q

φLr̂ dx dt+

∫∫
Q

σ (L∗q̂ − ẑN − r̂1O2
) dx dt

=

∫∫
Q

ŵ · (L∗ϕ+∇π1 − ψ1O1) dx dt+

∫∫
Q

ẑ · (Lψ +∇π2 − σ eN ) dx dt

+

∫∫
Q

r̂ (L∗φ− ϕN − σ 1O2
) dx dt+

∫∫
Q

q̂Lσ dxdt.

Notice that for the first equality, we have only used the definitions (4.5) and (4.7) in (4.4),
together with the equation (4.8). For the second one, we have used integration by parts in
time and space.

From this last equality, we obtain for all (hw, hz, hr, hq) ∈ L2(Q)2N+2∫∫
Q

w̃ · hw dxdt+

∫∫
Q

z̃ · hz dxdt+

∫∫
Q

r̃ hr dxdt+

∫∫
Q

q̃ hq dxdt

=

∫∫
Q

ŵ · Φw dxdt+

∫∫
Q

ẑ · Φz dxdt+

∫∫
Q

r̂Φr dxdt+

∫∫
Q

q̂Φq dxdt,

(4.12)

where (Φw,Φz,Φr,Φq) is the unique solution of
e−7/2sβ∗Φw = hw, in Q,

L2
H [e−7/2sβ∗Φz] = hz, ∇ · Φz = 0, in Q,

e−7/2sβ∗Φr = hr, in Q,

L3[e−7/2sβ∗Φq] = hq, in Q,

(4.13)
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such that 
L`H(e−7/2sβ∗Φz) = 0 on Σ, ` = 0, 1,

L`H(e−7/2sβ∗Φz)(0) = 0 in Ω, ` = 0, 1,

Lk(e−7/2sβ∗Φq) = 0 on Σ, k = 0, . . . , 2,

Lk(e−7/2sβ∗Φq)(0) = 0 in Ω, k = 0, . . . , 2.

(4.14)

It is classical to show that (4.12)-(4.14) is equivalent to (4.10)-(4.11).

Next, since this paper is also meant to be a complement of [11], we concentrate in proving
the part of (4.9) concerning q̂. The part concerning ẑ was proved in detail in [11]. Namely,
it was proved that

e7/2sβ∗(γ∗)−5−5/mẑ ∈ L2(Q)N . (4.15)

Nevertheless, following the arguments that we will show now, (4.15) can be readily deduced.
We begin by considering the functions

q∗,0 := e7/2sβ∗(γ∗)−5−5/mq̂, fq∗,0 := e7/2sβ∗(γ∗)−5−5/m(fq + ẑN + r̂1O2
).

Notice that, from (4.3), (4.6), (4.10) and (4.15), we have fq∗,0 ∈ L2(Q). Then, by (4.8)
q∗,0 verifies  L

∗q∗,0 = fq∗,0 − (e7/2sβ∗(γ∗)−5−5/m)tq̂ in Q,
q∗,0 = 0 on Σ,
q∗,0(T ) = 0 in Ω.

From (4.10), we have the identity:

(e7/2sβ∗(γ∗)−5−5/m)tq̂ = c3(t)(L∗)3q̃,

where we have denoted by ck(t) a function such that (see (2.2))∣∣∣d`ck
dt`

∣∣∣ ≤ C <∞, ∀ ` = 0, . . . , k. (4.16)

On the other hand, for any h ∈ X2,0 we have∫∫
Q

q∗,0 hdxdt =

∫∫
Q

fq∗,0 Φ dxdt−
∫∫

Q

c3(t)(L∗)3q̃Φ dxdt,

where Φ ∈ X3,0 is the solution of  LΦ = h in Q,
Φ = 0 on Σ,
Φ(0) = 0 in Ω.

Using (4.11), we can integrate by parts to obtain∫∫
Q

q∗,0 hdx dt =

∫∫
Q

fq∗,0 Φ dxdt−
∫∫

Q

(L∗)2q̃ (L[c3(t)Φ]) dxdt

=

∫∫
Q

fq∗,0 Φ dxdt−
∫∫

Q

q̃L3[c3(t)Φ] dxdt.

Notice that
L3[c3(t)Φ] = c′′′3 (t)Φ + 3c′′3(t)LΦ + 3c′3(t)L2Φ + c3(t)L3Φ

and since
‖Φ‖X3

≤ C‖h‖X2,0
,

15



(from regularity result (2.10) and the equivalence between norms), we obtain from the last
equality, together with (4.16),∫∫

Q

q∗,0 hdxdt ≤ C
[∥∥fq∗,0∥∥L2(Q)

+ ‖q̃‖L2(Q)

]
‖h‖X2,0 , ∀h ∈ X2,0. (4.17)

Now, let us set

q∗,1 := e7/2sβ∗(γ∗)−8−8/mq̂, fq∗,1 := e7/2sβ∗(γ∗)−8−8/m(fq + ẑN + r̂1O2
).

Same as before, q∗,1 solves L
∗q∗,1 = fq∗,1 − (e7/2sβ∗(γ∗)−8−8/m)tq̂ in Q,

q∗,1 = 0 on Σ,
q∗,1(T ) = 0 in Ω,

and for any h ∈ X1,0 we have∫∫
Q

q∗,1 hdx dt =

∫∫
Q

fq∗,1 Φ dxdt−
∫∫

Q

(e7/2sβ∗(γ∗)−8−8/m)tq̂Φ dx dt.

Moreover, since∫∫
Q

(e7/2sβ∗(γ∗)−8−8/m)tq̂Φ dxdt =

∫∫
Q

q∗,0 c2(t)Φ dx dt,

and c2(t)Φ ∈ X2,0, we obtain from (4.17), with c2(t)Φ instead of h:∫∫
Q

c2(t)Φ q∗,0 dxdt ≤ C
[∥∥fq∗,0∥∥L2(Q)

+ ‖q̃‖L2(Q)

]
‖c2(t)Φ‖X2,0 .

Going back to q∗,1, we get using (4.16) that∫∫
Q

q∗,1 hdxdt ≤ C
[∥∥fq∗,0∥∥L2(Q)

+ ‖q̃‖L2(Q)

]
‖Φ‖X2,0

.

Notice that we have also used (γ∗)−8−8/m ≤ C(γ∗)−5−5/m. From (2.10) we have

‖Φ‖X2
≤ C‖h‖X1,0

,

and therefore∫∫
Q

q∗,1 hdxdt ≤ C
[∥∥fq∗,0∥∥L2(Q)

+ ‖q̃‖L2(Q)

]
‖h‖X1,0

, ∀h ∈ X1,0. (4.18)

Finally, we set

q∗,2 := e7/2sβ∗(γ∗)−10−10/mq̂, fq∗,2 := e7/2sβ∗(γ∗)−10−10/m(fq + ẑN + r̂1O).

As before, we find that for any h ∈ X0 we have∫∫
Q

q∗,2 hdxdt =

∫∫
Q

fq∗,2 Φ dxdt−
∫∫

Q

(e7/2sβ∗(γ∗)−10−10/m)tq̂Φ dxdt

and ∫∫
Q

(e7/2sβ∗(γ∗)−10−10/m)tq̂Φ dxdt =

∫∫
Q

c1(t)Φ q∗,1 dx dt,
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so we can use (4.18) with c1(t)Φ ∈ X1,0 instead of h and we obtain, using ‖Φ‖X1
≤ C‖h‖X0

,∫∫
Q

q∗,2 hdx dt ≤ C
[∥∥fq∗,0∥∥L2(Q)

+ ‖q̃‖L2(Q)

]
‖h‖X0

, ∀h ∈ X0. (4.19)

Thus, we deduce that q∗,2 ∈ L2(Q).
Finally, to complete the proof of (4.9), let

q∗ := e7/2sβ∗(γ∗)−11−11/mq̂, fq∗ := e7/2sβ∗(γ∗)−11−11/m(fq + ẑN + r̂1O2).

Then, q∗ satisfies  L
∗q∗ = fq∗ + (e7/2sβ∗(γ∗)−11−11/m)tq̂ in Q,

q∗ = 0 on Σ,
q∗(T ) = 0 in Ω.

The right-hand side of this equation belongs to L2(Q)N in view of (4.3), (4.6), (4.10),
(4.15), (2.2) and q∗,2 ∈ L2(Q). Thus, applying the regularity result for the heat equa-
tion (2.10), we deduce that q∗ ∈ X1. We complete the decay properties in (4.9) in the same
manner by (2.12) for ŵ and ẑ. This finishes the proof of Proposition 4.2.

5 Null controllability of the nonlinear system

In this section we prove Theorem 1.1. We will prove that there exists a control v with vi ≡ 0,
for i ∈ {1, . . . , N − 1}, such that the solution of the system

Lw + (w · ∇)w +∇p0 = f + v1ω + r eN , ∇ · w = 0 in Q,
L∗z + (z · ∇t)w − (w · ∇)z + q∇r +∇p1 = w1O1 , ∇ · z = 0 in Q,
Lr + w · ∇r = f0 in Q,
L∗q − w · ∇q = zN + r 1O2

in Q,
w = z = 0, r = s = 0 on Σ,
w(0) = 0, z(T ) = 0, r(0) = 0, q(T ) = 0 in Ω,

(5.1)

satisfies (z(0), q(0)) = (0, 0) in Ω.
We follow the arguments used in [19] (see also [10], [11] and [12]). Thanks to Proposi-

tion 4.2, we will be able to obtain the result for this nonlinear control problem by means of
the following inverse mapping theorem (see [1]):

Theorem 5.1. Let G1 and G2 be two Banach spaces and let F : G1 → G2 satisfy F ∈
C1(G1;G2). Assume that g1 ∈ G1, F(g1) = g2 and that F ′(g1) : G1 → G2 is surjective. Then,
there exists δ > 0 such that, for every ḡ ∈ G2 satisfying ‖ḡ−g2‖G2 < δ, there exists a solution
of the equation

F(g) = ḡ, g ∈ G1.

Proof of Theorem 1.1. We start by defining the space:

L2(e6sβ∗(0, T );L2(Ω)) := {u ∈ L2(Q) : e6sβ∗u ∈ L2(Q)}.

We will use Theorem 5.1 with the spaces

G1 := Ei,

G2 := L2(e6sβ∗(0, T );L2(Ω)2N+2)
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and the operator

F(w, p0, z, p1, r, q, v) := (Lw + (w · ∇)w +∇p0 − v1ω − r eN ,
L∗z + (z · ∇t)w − (w · ∇)z + q∇r +∇p1 − w1O1

,

Lr + w · ∇r, L∗q − w · ∇q − zN − r 1O2
) ,

for (w, p0, z, p1, r, q, v) ∈ G1.
With this setting, we have the following lemma:

Lemma 5.2. The operator F is of class C1(G1;G2).

Proof. Since all the terms in F are linear, except for (w ·∇)w, (z ·∇t)w−(w ·∇)z, q∇r, w ·∇r
and w · ∇q, it is sufficient to prove that the bilinear operator

((w1, p1
0, z

1, p1
1, r

1, q1, v1), (w2, p2
0, z

2, p2
1, r

2, q2, v2))→ (w1 · ∇)w2

is continuous from G1 × G1 to L2(e6sβ∗(0, T );L2(Ω)N ). Since Y1 ⊂ L∞(0, T ;V ), we have
that

e7/2sβ∗(γ∗)−1−1/mw ∈ L2(0, T ;H2(Ω)N ) ∩ L∞(0, T ;V )

for any (w, p0, z, p1, r, q, v) ∈ G1. Therefore

e7/2sβ∗(γ∗)−1−1/mw ∈ L2(0, T ;L∞(Ω)N )

and
∇(e7/2sβ∗(γ∗)−1−1/mw) ∈ L∞(0, T ;L2(Ω)N×N ).

Thus, taking into account (2.3), we obtain∥∥e6sβ∗(w1 · ∇)w2
∥∥
L2(Q)N

=
∥∥e−sβ∗(γ∗)2+2/m

(
e7/2sβ∗(γ∗)−1−1/mw1 · ∇

)
e7/2sβ∗(γ∗)−1−1/mw2

∥∥
L2(Q)N

≤ C
∥∥e7/2sβ∗(γ∗)−1−1/mw1

∥∥
L2(0,T ;L∞(Ω)N )

∥∥e7/2sβ∗(γ∗)−1−1/mw2
∥∥
L∞(0,T ;V )

.

Of course, we can perform the same computations for the terms (z · ∇t)w, (w · ∇)z. The
terms concerning r and q are treated analogously since

e7/2sβ∗
(

(γ∗)−1−1/m r, (γ∗)−11−11/m q
)
∈ L∞(0, T ;H1

0 (Ω)2),

for any (w, p0, z, p1, r, q, v) ∈ G1.

Now, since F ′(0) : G1 → G2 is given by

F ′(0)(w, p0, z, p1, r, q, v) = (Lw +∇p0 − v1ω − r eN , L∗z +∇p1 − w1O1
,

Lr, L∗q − zN − r 1O2
) ,

for all (w, p0, z, p1, r, s, v) ∈ G1, from Proposition 4.2 it is deduced that F ′(0) is a surjective
functional. Together with Lemma 5.2, we can apply Theorem 5.1 with g1 = 0 and g2 = 0.
Thus, there exists δ > 0 such that, if ‖eC/tm(f, f0)‖L2(Q)N+1 ≤ δ, for some C > 0, then there
exists (w, p0, z, p1, r, q, v) ∈ G1 solution of (5.1). In particular, vi ≡ 0 and (z(0), q(0)) = (0, 0)
and the proof of Theorem 1.1 is complete.
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