Some controllability results for the Navier-Stokes and Boussinesq systems with a reduced number of scalar controls Seminario de Problemas Inversos y Control

CMM - Universidad de Chile

Nicolás Carreño

Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie Paris, France (Thesis advisor: Sergio Guerrero)

September 6th, 2012

Introduction 0000000	Result for the Navier-Stokes system	Boussinesq system 0000	Insensitizing controls for the Navier-Stokes system
Outline			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2 Result for the Navier-Stokes system

3 Boussinesq system

Insensitizing controls for the Navier-Stokes system

Introduction	Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
000000			

Framework:

- Ω bounded connected regular open subset of \mathbf{R}^N (N = 2 or 3)
- *T* > 0
- $\omega \subset \Omega$ (control set), $Q := \Omega \times (0, T)$, $\Sigma := \partial \Omega \times (0, T)$

$$\begin{cases} y_t - \Delta y + (y \cdot \nabla)y + \nabla p = \mathbf{v} \mathbb{1}_{\omega}, \ \nabla \cdot y = 0 & \text{in } Q, \\ y = 0 & \text{on } \Sigma, \\ y(0) = y^0 & \text{in } \Omega, \end{cases}$$
(NS)

where \mathbf{v} stands for the control which acts over the set ω .

Controllability problem: Can we drive the solution of (NS) to a given state at time T by means of a control $\mathbf{v} \in L^2(\omega \times (0, T))^N$?

Because of regularization, we cannot expect exact controllability.

Introduction	Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
000000	0000000000	0000	0000000

Exact controllability to trajectories

Consider the uncontrolled solution to the same equation:

$$\begin{cases} \bar{y}_t - \Delta \bar{y} + (\bar{y} \cdot \nabla) \bar{y} + \nabla \bar{p} = 0, \ \nabla \cdot \bar{y} = 0 & \text{in } Q, \\ \bar{y} = 0 & \text{on } \Sigma, \\ \bar{y}(0) = \bar{y}^0 & \text{in } \Omega. \end{cases}$$

Exact controllability to trajectories: Given an initial condition y^0 , can we find v such that

$$y(T)=\bar{y}(T)$$
?

Local exact controllability to trajectories: If $||y^0 - \bar{y}^0||$ is small enough, can we find v such that

$$y(T)=\bar{y}(T)$$
?

<u>Remark</u>: After time T, we can "turn off" the control and follow the ideal trajectory.

Introduction 000000	Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
Some res	sults		

Under regularity assumptions on \bar{y}

- [Fursikov, Imanuvilov 1998, 1999]

Improvements in:

- [Fernández-Cara, Guerrero, Imanuvilov, Puel, 2004]
- [Imanuvilov, Puel, Yamamoto, 2011]

Introduction	Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
0000000			

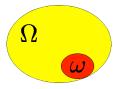
Reduced number of controls

<u>Question</u>: Can we find a control $v \in L^2(\omega \times (0, T))^N$ with a vanishing component, for example,

$$v = (v_1, 0)$$
 or $v = (v_1, v_2, 0)$?

Some results:

- [Fernández-Cara, Guerrero, Imanuvilov, Puel, 2006]: Local exact controllability to the trajectories when $\overline{\omega} \cap \partial \Omega \neq \emptyset$.

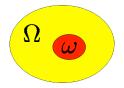


• Vanishing component depends on this geometric assumption.

Introduction	Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
0000000			

Reduced number of controls

We are interested in removing this geometric property.



- [Coron, Guerrero, 2009]: Null controllability of the Stokes system

$$\begin{cases} y_t - \Delta y + \nabla p = (v_1, v_2, 0) \mathbb{1}_{\omega}, \, \nabla \cdot y = 0 & \text{in } Q, \\ y = 0 & \text{on } \Sigma, \\ y(0) = y^0 & \text{in } \Omega, \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

that is, y(T)=0.

Introduction	Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
0000000	0000000000	0000	0000000

Carleman estimates and controllability

Consider the Stokes system and its adjoint:

$$\begin{cases} y_t - \Delta y + \nabla p = (v_1, 0) \mathbb{1}_{\omega} & \text{in } Q, \\ \nabla \cdot y = 0 & \text{in } Q, \\ y = 0 & \text{on } \Sigma, \\ y(0) = y^0 & \text{in } \Omega, \end{cases} \begin{cases} -\varphi_t - \Delta \varphi + \nabla \pi = 0, & \text{in } Q, \\ \nabla \cdot \varphi = 0 & \text{in } Q, \\ \varphi = 0 & \text{on } \Sigma, \\ \varphi(T) = \varphi^T & \text{in } \Omega. \end{cases}$$

Null controllability is equivalent to the Observability inequality

$$\int_{\Omega} |\varphi(0)|^2 dx \leq C \iint_{\omega \times (0,T)} |\varphi_1|^2 dx dt, \quad \varphi = (\varphi_1, \varphi_2).$$

Important tool: Carleman estimates

$$\iint_{Q} \rho_{1}(x,t) |\varphi|^{2} dx dt \leq C \iint_{\omega \times (0,T)} \rho_{2}(x,t) |\varphi_{1}|^{2} dx dt$$

 ρ_1 , ρ_2 some positive weight functions, *C* independent of φ .

Introduction	Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
0000000			

How do they prove this inequality?

Method introduced in [Coron, Guerrero, 2009]:

- $\nabla \cdot \varphi = \mathbf{0} \Rightarrow \Delta \pi = \mathbf{0},$
- Look at the equation satisfied by ∇Δφ₁ and apply Carleman estimates* (doing this eliminates the pressure),
- Use $\nabla \cdot \varphi = 0$ to recover φ_2 in the LHS.

*<u>**Remark:**</u> When applying the operator $\nabla \Delta$, we lose the boundary conditions. Special Carleman estimates are needed:

 [Fernández-Cara, González-Burgos, Guerrero, Puel, 2006] RHS in L²

- [Imanuvilov, Puel, Yamamoto, 2009] RHS in *H*⁻¹

Introduction	Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
0000000	•000000000	0000	
Navier-	Stokes system		

We deal with the local null controllability of

$$\begin{cases} y_t - \Delta y + (y \cdot \nabla)y + \nabla p = (v_1, 0)\mathbb{1}_{\omega}, \ \nabla \cdot y = 0 & \text{in } Q, \\ y = 0 & \text{on } \Sigma, \\ y(0) = y^0 & \text{in } \Omega, \end{cases}$$

with no assumption on the control domain $\emptyset \neq \omega \subset \Omega$.

Theorem (Guerrero, C., 2011)

For every T > 0 and $\omega \subset \Omega$, the NS system is locally null controllable by a control $\mathbf{v} \in L^2(\omega \times (0, T))^2$ of the form $\mathbf{v} = (\mathbf{v}_1, \mathbf{0})$.

- We can also choose $v = (0, v_2)$.
- For N = 3, $v = (v_1, v_2, 0)$, $v = (v_1, 0, v_3)$ or $v = (0, v_2, v_3)$.

	Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
	000000000		
N A . 1 . 1	c c		

Method of proof

- Linearization around zero.
- Null controllability of the linearized system.
 Main tool: Carleman estimate for the adjoint system.
- Inverse mapping theorem to obtain the result for the nonlinear system.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

	Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system	
	000000000			
Linear system				

We deal with the null controllability of the linearized system around 0:

$$\begin{cases} y_t - \Delta y + \nabla p = f + (v_1, 0) \mathbb{1}_{\omega}, \ \nabla \cdot y = 0 & \text{in } Q, \\ y = 0 & \text{on } \Sigma, \\ y(0) = y^0 & \text{in } \Omega, \end{cases}$$
(L)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

where f is taken to decrease exponentially to zero in t = T.

We need a suitable observability inequality for the adjoint system.

Introduction	Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
0000000	000●0000000	0000	
Adjoint	system		

Consider the nonhomogeneous adjoint system:

$$\begin{cases} -\varphi_t - \Delta \varphi + \nabla \pi = g, \, \nabla \cdot \varphi = 0 & \text{ in } Q, \\ \varphi = 0 & \text{ on } \Sigma, \\ \varphi(T) = \varphi^T & \text{ in } \Omega, \end{cases}$$

where $g \in L^2(Q)^2$ and $\varphi^T \in L^2(\Omega)^2$.

We want to show a Carleman estimate of the type:

$$\iint_{Q} \rho_{1}(t) |\varphi|^{2} \leq C \left(\iint_{Q} \rho_{2}(t) |g|^{2} + \iint_{\omega \times (0,T)} \rho_{3}(t) |\varphi_{1}|^{2} \right)$$

for every $\varphi = (\varphi_1, \varphi_2)$ solution of the adjoint system.

Introduction	Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
0000000	0000●000000	0000	
Weight	functions		

Let ω_0 be a nonempty open set such that $\overline{\omega_0} \subset \omega$ and $\lambda > 1$

$$\alpha(x,t) = \frac{e^{2\lambda \|\eta\|_{\infty}} - e^{\lambda\eta(x)}}{\ell^8(t)} > 0, \ \xi(x,t) = \frac{e^{\lambda\eta(x)}}{\ell^8(t)} > 0,$$

where $\eta \in C^2(\overline{\Omega})$ and $\ell \in C^\infty([0, T])$ are s.t.

 $|\nabla \eta| > 0$ in $\overline{\Omega} \setminus \omega_0, \, \eta > 0$ in Ω and $\eta \equiv 0$ on $\partial \Omega$,

 $\ell(t) = t \quad \forall t \in [0, T/4], \, \ell(t) = T - t \quad \forall t \in [3T/4, T].$

Existence of η : [Fursikov, Imanuvilov, 1996].

Introduction 0000000 Result for the Navier-Stokes system

Boussinesq system

Insensitizing controls for the Navier-Stokes system

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Carleman estimate for the adjoint system

Proposition: Carleman inequality

There exists a constant C > 0 (depending on Ω , ω , T and λ)

$$s^{4} \iint_{Q} e^{-5s\alpha^{*}} (\xi^{*})^{4} |\varphi|^{2}$$
$$\leq C \left(\iint_{Q} e^{-3s\alpha^{*}} |g|^{2} + s^{7} \iint_{\omega \times (0,T)} e^{-2s\alpha - 3s\alpha^{*}} \xi^{7} |\varphi_{1}|^{2} \right)$$

for every $s \geq C$ and every $\varphi = (\varphi_1, \varphi_2)$ solution of the adjoint system.

	Result for the Navier-Stokes
00000	0000000000

Boussinesq system

Insensitizing controls for the Navier-Stokes system

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

What is different with the Stokes case?

system

- *g* ≠ 0.
- $\Delta \pi \neq 0$.
- We consider de Stokes systems:

$$\begin{cases} -w_t - \Delta w + \nabla \pi_w = \rho(t)g, \ \nabla \cdot w = 0 \text{ in } Q, \\ w = 0 \text{ on } \Sigma, \ w(T) = 0 \text{ in } \Omega, \end{cases}$$
$$\begin{cases} -z_t - \Delta z + \nabla \pi_z = -\rho'(t)\varphi, \ \nabla \cdot z = 0 \text{ in } Q, \\ z = 0 \text{ on } \Sigma, \ z(T) = 0 \text{ in } \Omega, \end{cases}$$
where
$$\boxed{\rho(t) = e^{-3/2s\alpha^*}} \text{ and } \boxed{\rho(t)\varphi = w + z}.$$

• Now $\Delta \pi_z = 0$ and we can apply the previous method to z.

• Regularity estimates for w.

	Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
0000000	00000000000	0000	0000000

- $-(\nabla \Delta z_1)_t \Delta(\nabla \Delta z_1) = -\rho'(t)\nabla \Delta \varphi_1$. No boundary conditions.
- We apply a Carleman inequality with nonhomogeneous boundary conditions [Imanuvilov, Puel, Yamamoto, 2009].
- Parabolic and elliptic Carleman estimates to obtain the local term in *z*₁.
- Regularity estimates for Stokes to eliminate the boundary terms.

	Result for the Navier-Stokes system
000000	00000000000

Boussinesq system

Insensitizing controls for the Navier-Stokes system

Null controllability of the linear system

We need weights that do not vanish at t = 0. Let

$$ilde{\ell}(t) = \left\{ egin{array}{cc} \|\ell\|_\infty & 0 \leq t \leq T/2, \ \ell(t) & T/2 < t \leq T. \end{array}
ight.$$

We define β and γ as α and ξ .

$$\begin{split} \|\varphi(0)\|_{L^2(\Omega)^2}^2 &+ \iint\limits_Q e^{-5s\beta^*} (\gamma^*)^4 |\varphi|^2 \\ &\leq C \left(\iint\limits_Q e^{-3s\beta^*} |g|^2 + \iint\limits_{\omega \times (0,T)} e^{-2s\widehat{\beta} - 3s\beta^*} \widehat{\gamma}^7 |\varphi_1|^2 \right) \end{split}$$

This is proved using classical energy estimates for Stokes and the previous Carleman inequality.

Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
0000000000		

Recall the linear system:

$$\begin{cases} y_t - \Delta y + \nabla p = f + (v_1, 0) \mathbb{1}_{\omega}, \, \nabla \cdot y = 0 & \text{in } Q, \\ y = 0 & \text{on } \Sigma, \\ y(0) = y^0 & \text{in } \Omega. \end{cases}$$

lf

$$\iint_Q e^{5s\beta^*}(\gamma^*)^{-4}|f|^2 < +\infty,$$

then we can prove that there exists a control v_1 such that y(T)=0. Furthermore,

$$\boxed{\iint_{Q} e^{3s\beta^{*}} |y|^{2} + \iint_{Q} e^{2s\widehat{\beta} + 3s\beta^{*}} \widehat{\gamma}^{-7} |v_{1}|^{2} \mathbb{1}_{\omega} < +\infty,}$$

which gives that y goes to zero at T exponentially (so does the control).

	Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
000000	000000000	0000	0000000

Controllability of the NS system

$$\begin{cases} y_t - \Delta y + (y \cdot \nabla)y + \nabla p = (v_1, 0)\mathbb{1}_{\omega}, \ \nabla \cdot y = 0 & \text{in } Q, \\ y = 0 & \text{on } \Sigma, \\ y(0) = y^0 & \text{in } \Omega. \end{cases}$$

We consider the operator:

$$\mathcal{A}(y, p, v_1) = (y_t - \Delta y + (y \cdot \nabla)y + \nabla p - (v_1, 0)\mathbb{1}_{\omega}, y(0))$$

Of class C^1 between special espaces (where in particular |y(T)=0|).

$$\mathcal{A}'(0,0,0)(y,p,v_1) = (y_t - \Delta y + \nabla p - (v_1,0)\mathbb{1}_{\omega}, y(0))$$

is surjective by the null controllability of the linear system. Inverse mapping theorem around (0,0,0) gives the result for NS, i.e., there exists $\delta > 0$ such that if $||y^0|| < \delta$, then there exists (y, p, v_1) such that

$$\mathcal{A}(y,p,v_1)=(0,y^0).$$

Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
	● 000	

Extension: Boussinesq system

Now we consider the Boussinesq system:

$$\begin{cases} y_t - \Delta y + (y \cdot \nabla)y + \nabla p = \mathbf{v} \mathbb{1}_{\omega} + \theta \, \mathbf{e}_3, \, \nabla \cdot y = 0 & \text{in } Q, \\ \theta_t - \Delta \theta + y \cdot \nabla \theta = \mathbf{v}_0 \mathbb{1}_{\omega} & \text{in } Q, \end{cases}$$

$$\begin{cases} y = 0, \ \theta = 0 & \text{on } \Sigma, \\ y(0) = y^0, \ \theta(0) = \theta^0 & \text{in } \Omega. \end{cases}$$

<u>Goal</u>: To find a control $v \in L^2(\omega \times (0, T))^3$ of the form $v = (v_1, 0, 0)$, and $v_0 \in L^2(\omega \times (0, T))$ such that

y(T) = 0 and $\theta(T) = \overline{\theta}(T)$

where

$$\left\{ \begin{array}{ll} \nabla \bar{p} = \bar{\theta} \, e_3 & \text{ in } Q, \\ \bar{\theta}_t - \Delta \bar{\theta} = 0 & \text{ in } Q, \\ \bar{\theta} = 0 \text{ on } \Sigma, \bar{\theta}(0) = \bar{\theta}^0 & \text{ in } \Omega, \end{array} \right.$$

i.e., local controllability to the trajectory $(0, \bar{p}, \bar{\theta})$.

	Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
0000000	0000000000	0000	0000000

Theorem (C., 2011)

For every T > 0 and $\omega \subset \Omega$, the Boussinesq system is locally controllable to the trajectory $(0, \bar{p}, \bar{\theta})$ by controls $v_0 \in L^2(\omega \times (0, T))$ and $v \in L^2(\omega \times (0, T))^3$ of the form $v = (v_1, 0, 0)$.

- We can also choose $v = (0, v_2, 0)$.
- For N = 2, $v \equiv 0$: No control is needed in the fluid equation.

	Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
0000000	0000000000	0000	0000000

Linearized system around $(0, \bar{p}, \bar{\theta})$:

$$\begin{cases} y_t - \Delta y + \nabla p = f + (v_1, 0, 0) \mathbb{1}_{\omega} + \theta e_3, \nabla \cdot y = 0 & \text{in } Q, \\ \theta_t - \Delta \theta + y \cdot \nabla \overline{\theta} = f_0 + v_0 \mathbb{1}_{\omega} & \text{in } Q, \\ y = 0, \ \theta = 0 & \text{on } \Sigma, \\ y(0) = y^0, \ \theta(0) = \theta^0 & \text{in } \Omega, \end{cases}$$

where f and f_0 will be taken to decrease exponentially to zero in T. The (nonhomogeneous) adjoint system:

$$\begin{cases} -\varphi_t - \Delta \varphi + \nabla \pi = g - \psi \nabla \overline{\theta}, \, \nabla \cdot \varphi = 0 & \text{in } Q, \\ -\psi_t - \Delta \psi = g_0 + \varphi_3 & \text{in } Q, \\ \varphi = 0, \, \psi = 0 & \text{on } \Sigma, \\ \varphi(T) = \varphi^T, \, \psi(T) = \psi^T & \text{in } \Omega, \end{cases}$$

where $g \in L^2(Q)^3$, $g_0 \in L^2(Q)$, $\varphi^T \in L^2(\Omega)^3$ and $\psi^T \in L^2(\Omega)$.

Introduction	Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
		0000	

We prove a Carleman estimate of the type

$$\begin{split} \iint_{Q} \rho_{1}(t)(|\varphi|^{2} + |\psi|^{2}) &\leq C \left(\iint_{Q} \rho_{2}(t)(|g|^{2} + |g_{0}|^{2}) \\ &+ \iint_{\omega \times (0,T)} \rho_{3}(t)(|\varphi_{1}|^{2} + |\psi|^{2}) \right) \end{split}$$

for every $(\varphi, \psi) = (\varphi_1, \varphi_2, \varphi_3, \psi)$ solution of the adjoint system. How do we prove it?

- With the previous method, we obtain local terms of φ_1 and φ_3 .
- We eliminate φ_3 using the equation.

$$\varphi_3 = -\psi_t - \Delta \psi - g_0.$$

• For ψ , we use the classical Carleman for the heat equation.

	Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
0000000	0000000000	0000	0000000

Insensitizing controls for Navier-Stokes system

We consider the problem of insensitizing controls for the NS system:

$$\begin{cases} y_t - \Delta y + (y \cdot \nabla)y + \nabla p = f + v \mathbb{1}_{\omega}, \, \nabla \cdot y = 0 & \text{in } Q, \\ y = 0 & \text{on } \Sigma, \\ y(0) = y^0 + \tau \widehat{y}^0 & \text{in } \Omega, \end{cases}$$
(S)

where τ is a small constant and $\|\hat{y}^0\|_{L^2(\Omega)^N} = 1$. Both are unknown. **Insensitizing control problem:** To find a control $v \in L^2(\omega \times (0, T))^N$ such that the functional (Sentinel)

$$J(y) = \iint_{\mathcal{O} \times (0,T)} |y|^2 \, dx \, dt, \, \mathcal{O} \subset \Omega \text{ (Observation set)}$$

is not affected by the uncertainty of the initial data, that is,

$$\left.\frac{\partial J(y)}{\partial \tau}\right|_{\tau=0} = 0, \, \forall \widehat{y}^0 \in L^2(\Omega)^N \text{ s.t. } \|\widehat{y}^0\|_{L^2(\Omega)^N} = 1.$$

	Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
0000000	0000000000	0000	0000000
C			
Some p	previous works		

- Heat equation: [Bodart, Fabre, 1995], [de Teresa, 2000]
- Gradient as Sentinel: [Guerrero, 2007]
- Stokes: [Guerrero, 2007]
- Navier-Stokes: [Gueye, 2010]

We are interested in controls with one vanishing component.

	Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
0000000	0000000000	0000	000000

A cascade Navier-Stokes system

The previous condition is equivalent to the following null controllability problem: To find a control $v = (v_1, 0)$ such that z(0) = 0, where

$$\begin{cases} w_t - \Delta w + (w \cdot \nabla)w + \nabla p^0 = f + (v_1, 0)\mathbb{1}_{\omega}, \nabla \cdot w = 0 & \text{in } Q, \\ -z_t - \Delta z + (z \cdot \nabla^t w) - (w \cdot \nabla)z + \nabla q = w\mathbb{1}_{\mathcal{O}}, \nabla \cdot z = 0 & \text{in } Q, \\ w = z = 0 & \text{on } \Sigma, \\ w(0) = y^0, z(T) = 0 & \text{in } \Omega. \end{cases}$$

Theorem (Gueye, C., 2012)

Assume $y^0 = 0$ and $\mathcal{O} \cap \omega \neq \emptyset$. There exists $\delta > 0$ such that if $\|e^{K/t^{10}}f\|_{L^2(Q)^2} < \delta$, there exists a control $v_1 \in L^2(\omega \times (0, T))$ such that z(0) = 0.

- We can also choose $v = (0, v_2)$.
- For N = 3: $v = (v_1, v_2, 0)$, $v = (v_1, 0, v_3)$ or $v = (0, v_2, v_3)$.

Introduction 0000000	Result for the Navier-Stokes system	Boussinesq system 0000	Insensitizing controls for the Navier-Stokes system
Same sti	rategy as before		

Null controllability of the linearized system around 0:

$$\begin{cases} w_t - \Delta w + \nabla p^0 = f^0 + (v_1, 0) \mathbb{1}_{\omega}, \nabla \cdot w = 0 & \text{in } Q, \\ -z_t - \Delta z + \nabla q = f^1 + w \mathbb{1}_{\mathcal{O}}, \nabla \cdot z = 0 & \text{in } Q, \\ w = z = 0 & \text{on } \Sigma, \\ w(0) = 0, z(T) = 0 & \text{in } \Omega, \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where f^0 and f^1 decrease exponentially to zero at t = 0.

• The control acts on z through w.

Introduction 0000000	Result for the Navier-Stokes system	Boussinesq system 0000	Insensitizing controls for the Navier-Stokes system

As before, we want to show an estimate of the form

$$\begin{split} \iint_{Q} \rho_{1}(t)(|\varphi|^{2}+|\psi|^{2}) &\leq C\left(\iint_{Q} \rho_{2}(t)(|g^{0}|^{2}+|g^{1}|^{2}+|\nabla g^{1}|^{2})\right.\\ &+ \iint_{\omega\times(0,T)} \rho_{3}(t)|\varphi_{1}|^{2}\right) \end{split}$$

where $(\varphi, \psi) = (\varphi_1, \varphi_2, \psi)$ is the solution of the adjoint system:

$$\left\{ \begin{array}{ll} -\varphi_t - \Delta \varphi + \nabla \pi = g^0 + \psi 1\!\!\!\! 1_{\mathcal{O}}, & \text{ in } Q, \\ \psi_t - \Delta \psi + \nabla \kappa = g^1, & \text{ in } Q, \\ \nabla \cdot \varphi = \nabla \cdot \psi = 0, \text{ in } Q, \varphi = \psi = 0 \text{ on } \Sigma \\ \varphi(T) = 0, \psi(0) = \psi^0 & \text{ in } \Omega. \end{array} \right.$$

• $g^1 \in L^2(0, T; H^1_0(\Omega)^2)$ with $\nabla \cdot g^1 = 0$.

Introduction 0000000	Result for the Navier-Stokes system	Boussinesq system 0000	Insensitizing controls for the Navier-Stokes system
Idea of p	proof		

- Main idea: To combine Carleman inequalities for ψ and φ , and estimate the local term in ψ by local term φ_1 .
- For φ , we use the Carleman for NS.
- Because of the pressure term, we need a Carleman for ψ with local term in $\Delta \psi_1$.
- Need to apply the operator $\nabla \nabla \Delta$ to the equation satisfied by ψ_1 . More regularity needed for ψ (and g^1).
- Use the equation

$$\Delta \psi_1 = -\Delta \varphi_{1,t} - \Delta^2 \varphi_1 + \partial_1 \nabla \cdot g^0 - \Delta g_1^0$$

to eliminate the local term $\Delta \psi_1$.

Introduction	Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
0000000		0000	○○○○○○●○
Final co	mments		

• What about controllability to trajectories?

$$-\varphi_t - \Delta \varphi + \bar{\mathbf{y}} \cdot \mathbf{D} \varphi + \nabla \pi = \mathbf{g}.$$

Terms in φ_2 that we do not know how to estimate.

- What about two vanishing components, e.g., v = (v₁, 0, 0)?. [P. Lissy, 2012]: Return method.
- Other boundary conditions: Navier-slip.
- Insensitizing controls for Boussinesq system.
- Inverse problems? Observations in one less direction?

0000000 000000000 0000 000000		Result for the Navier-Stokes system	Boussinesq system	Insensitizing controls for the Navier-Stokes system
	0000000	0000000000	0000	0000000

Thank you for your attention

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ