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Framework:

Ω bounded connected regular open subset of RN (N = 2 or 3)

T > 0

ω ⊂ Ω (control set), Q := Ω× (0,T ), Σ := ∂Ω× (0,T ) yt −∆y + (y · ∇)y +∇p = v1ω, ∇ · y = 0 in Q,
y = 0 on Σ,
y(0) = y0 in Ω,

(NS)

where v stands for the control which acts over the set ω.

Controllability problem: Can we drive the solution of (NS) to a given

state at time T by means of a control v ∈ L2(ω × (0,T ))N?

Because of regularization, we cannot expect exact controllability.
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Exact controllability to trajectories

Consider the uncontrolled solution to the same equation: ȳt −∆ȳ + (ȳ · ∇)ȳ +∇p̄ = 0, ∇ · ȳ = 0 in Q,
ȳ = 0 on Σ,
ȳ(0) = ȳ0 in Ω.

Exact controllability to trajectories: Given an initial condition y0, can we
find v such that

y(T ) = ȳ(T ) ?

Local exact controllability to trajectories: If ‖y0 − ȳ0‖ is small enough,
can we find v such that

y(T ) = ȳ(T ) ?

Remark: After time T , we can “turn off” the control and follow the
ideal trajectory.
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Some results

Under regularity assumptions on ȳ

- [Fursikov, Imanuvilov 1998, 1999]

Improvements in:

- [Fernández-Cara, Guerrero, Imanuvilov, Puel, 2004]

- [Imanuvilov, Puel, Yamamoto, 2011]
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Reduced number of controls

Question: Can we find a control v ∈ L2(ω × (0,T ))N with a vanishing
component, for example,

v = (v1, 0) or v = (v1, v2, 0) ?

Some results:

- [Fernández-Cara, Guerrero, Imanuvilov, Puel, 2006]: Local exact
controllability to the trajectories when ω ∩ ∂Ω 6= ∅.

Vanishing component depends on this geometric assumption.
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Reduced number of controls

We are interested in removing this geometric property.

- [Coron, Guerrero, 2009]: Null controllability of the Stokes system yt −∆y +∇p = (v1, v2, 0)1ω, ∇ · y = 0 in Q,
y = 0 on Σ,
y(0) = y0 in Ω,

that is, y(T)=0 .
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Carleman estimates and controllability

Consider the Stokes system and its adjoint:
yt −∆y +∇p = (v1, 0)1ω in Q,
∇ · y = 0 in Q,
y = 0 on Σ,
y(0) = y0 in Ω,


−ϕt −∆ϕ+∇π = 0, in Q,
∇ · ϕ = 0 in Q,
ϕ = 0 on Σ,
ϕ(T ) = ϕT in Ω.

Null controllability is equivalent to the Observability inequality∫
Ω

|ϕ(0)|2 dx ≤ C

∫∫
ω×(0,T )

|ϕ1|2dx dt, ϕ = (ϕ1, ϕ2).

Important tool: Carleman estimates∫∫
Q

ρ1(x , t)|ϕ|2dx dt ≤ C

∫∫
ω×(0,T )

ρ2(x , t)|ϕ1|2dx dt

ρ1, ρ2 some positive weight functions, C independent of ϕ.



Introduction Result for the Navier-Stokes system Boussinesq system Insensitizing controls for the Navier-Stokes system

How do they prove this inequality?

Method introduced in [Coron, Guerrero, 2009]:

∇ · ϕ = 0⇒∆π = 0,

Look at the equation satisfied by ∇∆ϕ1 and apply Carleman
estimates* (doing this eliminates the pressure),

Use ∇ · ϕ = 0 to recover ϕ2 in the LHS.

*Remark: When applying the operator ∇∆, we lose the boundary
conditions. Special Carleman estimates are needed:

- [Fernández-Cara, González-Burgos, Guerrero, Puel, 2006]
RHS in L2

- [Imanuvilov, Puel, Yamamoto, 2009]
RHS in H−1
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Navier-Stokes system

We deal with the local null controllability of yt −∆y + (y · ∇)y +∇p = (v1, 0)1ω, ∇ · y = 0 in Q,
y = 0 on Σ,
y(0) = y0 in Ω,

with no assumption on the control domain ∅ 6= ω ⊂ Ω.

Theorem (Guerrero, C., 2011)

For every T > 0 and ω ⊂ Ω, the NS system is locally null controllable by
a control v ∈ L2(ω × (0,T ))2 of the form v = (v1, 0).

We can also choose v = (0, v2).

For N = 3, v = (v1, v2, 0), v = (v1, 0, v3) or v = (0, v2, v3).
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Method of proof

Linearization around zero.

Null controllability of the linearized system.
Main tool: Carleman estimate for the adjoint system.

Inverse mapping theorem to obtain the result for the nonlinear
system.
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Linear system

We deal with the null controllability of the linearized system around 0: yt −∆y +∇p = f + (v1, 0)1ω, ∇ · y = 0 in Q,
y = 0 on Σ,
y(0) = y0 in Ω,

(L)

where f is taken to decrease exponentially to zero in t = T .

We need a suitable observability inequality for the adjoint system.
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Adjoint system

Consider the nonhomogeneous adjoint system: −ϕt −∆ϕ+∇π = g , ∇ · ϕ = 0 in Q,
ϕ = 0 on Σ,
ϕ(T ) = ϕT in Ω,

where g ∈ L2(Q)2 and ϕT ∈ L2(Ω)2.

We want to show a Carleman estimate of the type:∫∫
Q

ρ1(t)|ϕ|2 ≤ C

(∫∫
Q

ρ2(t)|g |2 +

∫∫
ω×(0,T )

ρ3(t)|ϕ1|2
)

for every ϕ = (ϕ1, ϕ2) solution of the adjoint system.
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Weight functions

Let ω0 be a nonempty open set such that ω0 ⊂ ω and λ > 1

α(x , t) =
e2λ‖η‖∞ − eλη(x)

`8(t)
> 0, ξ(x , t) =

eλη(x)

`8(t)
> 0,

where η ∈ C 2(Ω) and ` ∈ C∞([0,T ]) are s.t.

|∇η| > 0 in Ω \ ω0, η > 0 in Ω and η ≡ 0 on ∂Ω,

`(t) = t ∀t ∈ [0,T/4], `(t) = T − t ∀t ∈ [3T/4,T ].

Existence of η : [Fursikov, Imanuvilov, 1996].
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Carleman estimate for the adjoint system

Proposition: Carleman inequality

There exists a constant C > 0 (depending on Ω, ω, T and λ)

s4

∫∫
Q

e−5sα∗(ξ∗)4|ϕ|2

≤ C

(∫∫
Q

e−3sα∗ |g |2 + s7

∫∫
ω×(0,T )

e−2sα−3sα∗ξ7|ϕ1|2
)

for every s ≥ C and every ϕ = (ϕ1, ϕ2) solution of the adjoint system.
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What is different with the Stokes case?

g 6= 0.

∆π 6= 0.

We consider de Stokes systems:{
−wt −∆w +∇πw = ρ(t)g , ∇ · w = 0 in Q,
w = 0 on Σ, w(T ) = 0 in Ω,{
−zt −∆z +∇πz = −ρ′(t)ϕ, ∇ · z = 0 in Q,
z = 0 on Σ, z(T ) = 0 in Ω,

where ρ(t) = e−3/2sα∗ and ρ(t)ϕ = w + z .

Now ∆πz = 0 and we can apply the previous method to z .

Regularity estimates for w .



Introduction Result for the Navier-Stokes system Boussinesq system Insensitizing controls for the Navier-Stokes system

−(∇∆z1)t −∆(∇∆z1) = −ρ′(t)∇∆ϕ1. No boundary conditions.

We apply a Carleman inequality with nonhomogeneous boundary
conditions [Imanuvilov, Puel, Yamamoto, 2009].

Parabolic and elliptic Carleman estimates to obtain the local term
in z1.

Regularity estimates for Stokes to eliminate the boundary terms.
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Null controllability of the linear system

We need weights that do not vanish at t = 0.
Let

˜̀(t) =

{
‖`‖∞ 0 ≤ t ≤ T/2,
`(t) T/2 < t ≤ T .

We define β and γ as α and ξ.

‖ϕ(0)‖2
L2(Ω)2 +

∫∫
Q

e−5sβ∗(γ∗)4|ϕ|2

≤ C

∫∫
Q

e−3sβ∗ |g |2 +

∫∫
ω×(0,T )

e−2s bβ−3sβ∗ γ̂7|ϕ1|2

 .

This is proved using classical energy estimates for Stokes and the
previous Carleman inequality.
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Recall the linear system: yt −∆y +∇p = f + (v1, 0)1ω, ∇ · y = 0 in Q,
y = 0 on Σ,
y(0) = y0 in Ω.

If ∫∫
Q

e5sβ∗(γ∗)−4|f |2 < +∞,

then we can prove that there exists a control v1 such that y(T)=0 .

Furthermore,∫∫
Q

e3sβ∗ |y |2 +

∫∫
Q

e2s bβ+3sβ∗ γ̂−7|v1|21ω < +∞,

which gives that y goes to zero at T exponentially (so does the control).
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Controllability of the NS system

 yt −∆y + (y · ∇)y +∇p = (v1, 0)1ω, ∇ · y = 0 in Q,
y = 0 on Σ,
y(0) = y0 in Ω.

We consider the operator:

A(y , p, v1) = ( yt −∆y + (y · ∇)y +∇p − (v1, 0)1ω, y(0) )

Of class C 1 between special espaces (where in particular y(T)=0 ).

A′(0, 0, 0)(y , p, v1) = (yt −∆y +∇p − (v1, 0)1ω, y(0) )

is surjective by the null controllability of the linear system.
Inverse mapping theorem around (0,0,0) gives the result for NS, i.e., there
exists δ > 0 such that if ‖y0‖ < δ, then there exists (y , p, v1) such that

A(y , p, v1) = (0, y0) .
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Extension: Boussinesq system

Now we consider the Boussinesq system:
yt −∆y + (y · ∇)y +∇p = v1ω + θ e3, ∇ · y = 0 in Q,
θt −∆θ + y · ∇θ = v01ω in Q,
y = 0, θ = 0 on Σ,
y(0) = y0, θ(0) = θ0 in Ω.

Goal: To find a control v ∈ L2(ω × (0,T ))3 of the form v = (v1, 0, 0),
and v0 ∈ L2(ω × (0,T )) such that

y(T ) = 0 and θ(T ) = θ̄(T )

where 
∇p̄ = θ̄ e3 in Q,
θ̄t −∆θ̄ = 0 in Q,
θ̄ = 0 on Σ, θ̄(0) = θ̄0 in Ω,

i.e., local controllability to the trajectory (0, p̄, θ̄).
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Theorem (C., 2011)

For every T > 0 and ω ⊂ Ω, the Boussinesq system is locally controllable
to the trajectory (0, p̄, θ̄) by controls v0 ∈ L2(ω × (0,T )) and
v ∈ L2(ω × (0,T ))3 of the form v = (v1, 0, 0).

We can also choose v = (0, v2, 0).

For N = 2, v ≡ 0: No control is needed in the fluid equation.
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Linearized system around (0, p̄, θ̄):
yt −∆y +∇p = f + (v1, 0, 0)1ω + θ e3,∇ · y = 0 in Q,
θt −∆θ + y · ∇θ̄ = f0 + v01ω in Q,
y = 0, θ = 0 on Σ,
y(0) = y0, θ(0) = θ0 in Ω,

where f and f0 will be taken to decrease exponentially to zero in T .

The (nonhomogeneous) adjoint system:
−ϕt −∆ϕ+∇π = g − ψ∇θ̄, ∇ · ϕ = 0 in Q,
−ψt −∆ψ = g0 + ϕ3 in Q,
ϕ = 0, ψ = 0 on Σ,
ϕ(T ) = ϕT , ψ(T ) = ψT in Ω,

where g ∈ L2(Q)3, g0 ∈ L2(Q), ϕT ∈ L2(Ω)3 and ψT ∈ L2(Ω).
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We prove a Carleman estimate of the type∫∫
Q

ρ1(t)(|ϕ|2 + |ψ|2) ≤ C

(∫∫
Q

ρ2(t)(|g |2 + |g0|2)

+

∫∫
ω×(0,T )

ρ3(t)(|ϕ1|2 + |ψ|2)

)

for every (ϕ,ψ) = (ϕ1, ϕ2, ϕ3, ψ) solution of the adjoint system.
How do we prove it?

With the previous method, we obtain local terms of ϕ1 and ϕ3.

We eliminate ϕ3 using the equation.

ϕ3 = −ψt −∆ψ − g0.

For ψ, we use the classical Carleman for the heat equation.
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Insensitizing controls for Navier-Stokes system

We consider the problem of insensitizing controls for the NS system: yt −∆y + (y · ∇)y +∇p = f + v1ω, ∇ · y = 0 in Q,
y = 0 on Σ,
y(0) = y0 + τ ŷ0 in Ω,

(S)

where τ is a small constant and ‖ŷ0‖L2(Ω)N = 1. Both are unknown.

Insensitizing control problem: To find a control v ∈ L2(ω × (0,T ))N

such that the functional (Sentinel)

J(y) =

∫∫
O×(0,T )

|y |2 dx dt, O ⊂ Ω (Observation set)

is not affected by the uncertainty of the initial data, that is,

∂J(y)

∂τ

∣∣∣∣
τ=0

= 0, ∀ŷ0 ∈ L2(Ω)N s.t. ‖ŷ0‖L2(Ω)N = 1.
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Some previous works

Heat equation: [Bodart, Fabre, 1995], [de Teresa, 2000]

Gradient as Sentinel: [Guerrero, 2007]

Stokes: [Guerrero, 2007]

Navier-Stokes: [Gueye, 2010]

We are interested in controls with one vanishing component.
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A cascade Navier-Stokes system

The previous condition is equivalent to the following null controllability
problem: To find a control v = (v1, 0) such that z(0) = 0, where

wt −∆w + (w · ∇)w +∇p0 = f + (v1, 0)1ω, ∇ · w = 0 in Q,
−zt −∆z + (z · ∇tw)− (w · ∇)z +∇q = w1O, ∇ · z = 0 in Q,
w = z = 0 on Σ,
w(0) = y0, z(T ) = 0 in Ω.

Theorem (Gueye, C., 2012)

Assume y0 = 0 and O ∩ ω 6= ∅. There exists δ > 0 such that if
‖eK/t10

f ‖L2(Q)2 < δ, there exists a control v1 ∈ L2(ω × (0,T ))
such that z(0) = 0.

We can also choose v = (0, v2).

For N = 3: v = (v1, v2, 0), v = (v1, 0, v3) or v = (0, v2, v3).
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Same strategy as before

Null controllability of the linearized system around 0:
wt −∆w +∇p0 = f 0 + (v1, 0)1ω, ∇ · w = 0 in Q,
−zt −∆z +∇q = f 1 + w1O, ∇ · z = 0 in Q,
w = z = 0 on Σ,
w(0) = 0, z(T ) = 0 in Ω,

where f 0 and f 1 decrease exponentially to zero at t = 0.

The control acts on z through w .
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As before, we want to show an estimate of the form∫∫
Q

ρ1(t)(|ϕ|2 + |ψ|2) ≤ C

(∫∫
Q

ρ2(t)(|g0|2 + |g1|2 + |∇g1|2)

+

∫∫
ω×(0,T )

ρ3(t)|ϕ1|2
)

where (ϕ,ψ) = (ϕ1, ϕ2, ψ) is the solution of the adjoint system:
−ϕt −∆ϕ+∇π = g0 + ψ1O, in Q,
ψt −∆ψ +∇κ = g1, in Q,
∇ · ϕ = ∇ · ψ = 0, in Q, ϕ = ψ = 0 on Σ
ϕ(T ) = 0, ψ(0) = ψ0 in Ω.

g1 ∈ L2(0,T ; H1
0 (Ω)2) with ∇ · g1 = 0.
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Idea of proof

Main idea: To combine Carleman inequalities for ψ and ϕ, and
estimate the local term in ψ by local term ϕ1.

For ϕ, we use the Carleman for NS.

Because of the pressure term, we need a Carleman for ψ with local
term in ∆ψ1.

Need to apply the operator ∇∇∆ to the equation satisfied by ψ1.
More regularity needed for ψ (and g1).

Use the equation

∆ψ1 = −∆ϕ1,t −∆2ϕ1 + ∂1∇ · g0 −∆g0
1

to eliminate the local term ∆ψ1.
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Final comments

What about controllability to trajectories?

−ϕt −∆ϕ+ ȳ · Dϕ+∇π = g .

Terms in ϕ2 that we do not know how to estimate.

What about two vanishing components, e.g., v = (v1, 0, 0)?.
[P. Lissy, 2012]: Return method.

Other boundary conditions: Navier-slip.

Insensitizing controls for Boussinesq system.

Inverse problems? Observations in one less direction?
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Thank you for your attention


	Main Part
	Introduction
	

	Result for the Navier-Stokes system
	

	Boussinesq system
	

	Insensitizing controls for the Navier-Stokes system
	



