On the cost of null controllability of a linear KdV equation

Nicolás Carreño

Departamento de Matemática Universidade Federal de Pernambuco November 17, 2015

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

	0000 0000000	

Outline

Introduction

An estimation of the cost of null controllability

Behavior of the cost in the vanishing dispersion limit

Final comments

Nicolás Carreño - Universidad Técnica Federico Santa María

イロト イ部ト イヨト イヨト 三日

Introduction	

Cost in the limit 0000 0000000

Outline

Introduction

An estimation of the cost of null controllability

Behavior of the cost in the vanishing dispersion limit

Final comments

Nicolás Carreño - Universidad Técnica Federico Santa María

Introduction		
000	0000 0000000	

Control system

$$\begin{cases} y'(t) = f(t, y(t), v(t)), & t > 0\\ y(0) = y_0, \end{cases}$$

- $y(t) \in \mathcal{X}$ is the state of the system.
- $v(t) \in \mathcal{U}$ is the control.
- \mathcal{X}, \mathcal{U} are the state and admissible controls spaces, respectively.
- Controllability problem: Given T and y_0 , find v(t) driving y(t) to a target $\overline{y_1}$ at time T, that is, $y(T) = y_1$.
- Controllability types: exact, aproximate, null, local, global, to the trajectories...

Introduction		
000	0000 0000000	

Model example: Heat equation

Consider a regular open $\Omega \subset \mathbb{R}^N$ and $\omega \subset \Omega$ (control domain)

$$\begin{cases} y_t - \Delta y = \mathbf{v} \mathbb{1}_{\omega} & (x, t) \in \Omega \times (0, T), \\ y = 0 & x \in \partial \Omega, \\ y(0) = y^0 & x \in \Omega, \end{cases}$$

 $y_0 \in L^2(\Omega)$ and $\mathbb{1}_{\omega}(x)$ the characteristic function of ω .

• We look for ${m v}\in L^2(\omega imes (0,T))$ such that y(T)=0 and

$$\|v\|_{L^2(\omega \times (0,T))} \le C \|y_0\|_{L^2(\Omega)}.$$

• By linearity, this is equivalent to the control to the trajectories: find $v \in L^2(\omega \times (0,T))$ such that $y(T) = \overline{y(T)}$, where \overline{y} is solution of

$$\begin{cases} \bar{y}_t - \Delta \bar{y} = 0 & (x,t) \in \Omega \times (0,T), \\ \bar{y} = 0 & x \in \partial \Omega, \\ \bar{y}(0) = \bar{y}^0 & x \in \Omega. \end{cases}$$

Nicolás Carreño - Universidad Técnica Federico Santa María

Introduction		
000	0000 0000000	

Observability and Carleman estimates

Null controllability is equivalent to the $\underline{\rm observability}$ inequality: There exists C>0 such that

$$\int_{\Omega} |\varphi(0)|^2 \, \mathrm{d}x \le C \iint_{\omega \times (0,T)} |\varphi|^2 \, \mathrm{d}x \, \mathrm{d}t$$

where φ is the solution of the adjoint equation

$$\begin{cases} -\varphi_t - \Delta \varphi = 0 & (x,t) \in \Omega \times (0,T), \\ \varphi = 0 & x \in \partial \Omega, \\ \varphi(T) = \varphi_T \in L^2(\Omega) & x \in \Omega. \end{cases}$$

Carleman estimates: They have the form

$$\iint_{\Omega \times (0,T)} \rho |\varphi|^2 \, \mathrm{d}x \, \mathrm{d}t \le C \iint_{\omega \times (0,T)} \rho |\varphi|^2 \, \mathrm{d}x \, \mathrm{d}t$$

ρ = ρ(x,t) is a continuous and positive function.
 To obtain observability, we combine it with the energy estimate

$$\int_{\Omega} |\varphi(0)|^2 \, \mathrm{d}x \le \int_{\Omega} |\varphi(t)|^2 \, \mathrm{d}x, \quad t \in (0,T).$$

Introduction		
000	0000 0000000	

Observability and Carleman estimates

Null controllability is equivalent to the $\underline{\rm observability\ inequality}:$ There exists C>0 such that

$$\int_{\Omega} |\varphi(0)|^2 \, \mathrm{d}x \le C \iint_{\omega \times (0,T)} |\varphi|^2 \, \mathrm{d}x \, \mathrm{d}t$$

where φ is the solution of the adjoint equation

$$\begin{cases} -\varphi_t - \Delta \varphi = 0 & (x,t) \in \Omega \times (0,T), \\ \varphi = 0 & x \in \partial \Omega, \\ \varphi(T) = \varphi_T \in L^2(\Omega) & x \in \Omega. \end{cases}$$

Carleman estimates: They have the form

$$\iint_{\Omega \times (0,T)} \rho |\varphi|^2 \, \mathrm{d}x \, \mathrm{d}t \le C \iint_{\omega \times (0,T)} \rho |\varphi|^2 \, \mathrm{d}x \, \mathrm{d}t$$

• $\rho = \rho(x, t)$ is a continuous and positive function.

> To obtain observability, we combine it with the energy estimate

$$\int_{\Omega} |\varphi(0)|^2 \, \mathrm{d}x \leq \int_{\Omega} |\varphi(t)|^2 \, \mathrm{d}x, \quad t \in (0,T).$$

Nicolás Carreño - Universidad Técnica Federico Santa María

Cost of null controllability		
	0000 0000000	

Outline

Introduction

An estimation of the cost of null controllability

Behavior of the cost in the vanishing dispersion limit

Final comments

Cost of null controllability		
•0000	0000 0000000	

The Korteweg-de Vries (KdV) equation

$y_t + y_{xxx} + yy_x = 0 \quad x \in \mathbb{R}, t \ge 0.$

Recreation of the first sighting of a soliton by John Scott Russell in 1834

Nicolás Carreño - Universidad Técnica Federico Santa María

・ロト ・聞 ト ・ヨト ・ヨト

Cost of null controllability		
0000	0000 0000000	

A linear KdV equation on a bounded domain

▶ T > 0, $M \in \mathbb{R} \setminus \{0\}$ (transport coefficient), $\varepsilon > 0$ (dispersion coefficient).

$$\begin{cases} y_t + \varepsilon y_{xxx} - My_x = 0 & \text{in } (0,T) \times (0,L), \\ y_{|x=0} = v(t), \quad y_{x|x=L} = 0, \quad y_{xx|x=L} = 0 & \text{in } (0,T), \\ y_{|t=0} = y_0 & \text{in } (0,L). \end{cases}$$

- Controllability has been studied by Guilleron (2014) and Cerpa, Rivas, Zhang (2013).
- We are interested in the behavior of the cost of null controllability with respect to ε .

$$C_{cost}^{\varepsilon} := \sup_{y_0 \in L^2(0,L)} \Big\{ \min_{v \in L^2(0,T)} \frac{\|v\|_{L^2(0,T)}}{\|y_0\|_{L^2(0,L)}} : y_{|t=0} = y_0, y_{|t=T} = 0 \text{ in } (0,L) \Big\}.$$

 $\bullet \ C_{cost}^{\varepsilon}$ is the best constant such that

$$\|v\|_{L^2(0,T)} \le C \|y_0\|_{L^2(0,L)}.$$

Cost of null controllability		
00000	0000 0000000	

Examples

Heat equation:

$$\left\{ \begin{array}{ll} y_t - \varepsilon y_{xx} - My_x = 0 & \mbox{in } (0,T) \times (0,L), \\ y_{|x=0} = \textbf{\textit{v}}(t), \quad y_{|x=L} = 0 & \mbox{in } (0,T). \end{array} \right.$$

Coron, Guerrero (2005): $C_{cost}^{\varepsilon} \leq C_0 \exp\left(C(T, M)\varepsilon^{-1}\right)$.

(Classic) KdV equation:

$$\begin{cases} y_t + \varepsilon y_{xxx} - My_x = 0 & \text{in } (0,T) \times (0,L), \\ y_{|x=0} = v(t), \quad y_{|x=L} = 0, \quad y_{x|x=L} = 0 & \text{in } (0,T). \end{cases}$$

Glass, Guerrero (2009): $C_{cost}^{\varepsilon} \leq C_0 \exp\left(C(T, M)\varepsilon^{-1/2}\right)$. (Our) KdV equation:

 $\left\{ \begin{array}{ll} y_t + \varepsilon y_{xxx} - My_x = 0 & \text{ in } (0,T) \times (0,L), \\ y_{|x=0} = \textbf{\textit{v}}(t), \quad y_{x|x=L} = 0, \quad y_{xx|x=L} = 0 & \text{ in } (0,T). \end{array} \right.$

Guilleron (2014): $C_{cost}^{\varepsilon} \leq C_0 \exp\left(C(T,M)\varepsilon^{-1}\right)$.

Cost of null controllability		
00000	0000 0000000	

An estimate of the cost of null controllability

Theorem

Let T > 0, $M \in \mathbb{R}$ and $\varepsilon > 0$ be fixed. Then,

$$C_{cost}^{\varepsilon} \leq C_0 \exp\left(C(\varepsilon^{-1/2}T^{-1/2} + M^{1/2}\varepsilon^{-1/2} + MT)\right), \quad \text{if } M > 0, \text{ and}$$

$$C_{cost}^{\varepsilon} \le C_0 \exp\left(C(\varepsilon^{-1/2}T^{-1/2} + |M|^{1/2}\varepsilon^{-1/2})\right), \quad \text{if } M < 0$$

where C > 0 is a constant independent of T, M and ε , and $C_0 > 0$ depends polynomially on ε^{-1} , T^{-1} and $|M|^{-1}$.

• In particular, if ε is small enough

$$C_{cost}^{\varepsilon} \leq C_0 \exp\left(C(T, M)\varepsilon^{-1/2}\right).$$

・ロト ・四ト ・ヨト ・ヨト

11/28

Cost of null controllability 0000●	Cost in the limit 0000 0000000	

Duality argument

The proof is based on an observability inequality

$$\|\varphi_{|t=0}\|_{L^2(0,L)} \le C_{obs} \|\varphi_{xx|x=0}\|_{L^2(0,T)},$$

where φ satisfies (adjoint equation)

$$\begin{cases} -\varphi_t - \varepsilon \varphi_{xxx} + M \varphi_x = 0 & \text{in } (0,T) \times (0,L), \\ \varphi_{|x=0} = 0, \quad \varphi_{x|x=0} = 0, \quad (\varepsilon \varphi_{xx} - M \varphi)_{|x=L} = 0 & \text{in } (0,T). \end{cases}$$

• We consider the function $\phi := \varepsilon \varphi_{xx} - M \varphi$, which solves

$$\begin{cases} -\phi_t - \varepsilon \phi_{xxx} + M\phi_x = 0 & \text{in } (0,T) \times (0,L), \\ \phi_{x|x=0} = 0, \quad \phi_{xx|x=0} = 0, \quad \phi_{|x=L} = 0 & \text{in } (0,T) \end{cases}$$

and we prove (Carleman estimate)

$$\int_0^T \int_0^L e^{-2s\alpha} |\phi|^2 \le C_0 \int_0^T e^{-2s\alpha} |\phi|_{x=0}|^2, \quad \alpha = \frac{p(x)}{t^{1/2}(T-t)^{1/2}}.$$

► We recover φ from ϕ and $\varphi_{|x=0} = \varphi_{x|x=0} = 0$ (O.D.E.).

Cost in the limit

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Э

13/28

Outline

Introduction

An estimation of the cost of null controllability

Behavior of the cost in the vanishing dispersion limit

Final comments

	Cost in the limit	
	0000 000000	

Behavior of the cost in the vanishing dispersion limit

- We are now interested in the behavior of C_{cost}^{ε} as $\varepsilon \to 0^+$.
- Consider the transport equation ($\varepsilon = 0$)

$$y_t - My_x = 0$$
 in $(0, T) \times (0, L)$,
 $y_{|t=0} = y_0$ in $(0, L)$

with controls:

$$y_{|x=0} = v_1(t)$$
 if $M < 0$,
 $y_{|x=L} = v_2(t)$ if $M > 0$.

• The transport equation is controllable if only if $T \ge L/|M|$.

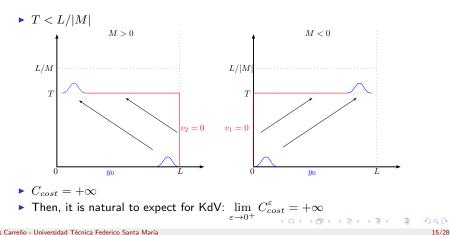
Nicolás Carreño - Universidad Técnica Federico Santa María

イロト イ部ト イヨト イヨト 三日

	Cost in the limit	
	0000	

On the controllability of the transport equation

 $y_t - My_x = 0$ in $(0, T) \times (0, L)$

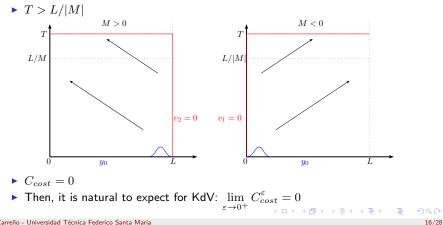


Nicolás Carreño - Universidad Técnica Federico Santa María

	Cost in the limit	
	0000 000000	

On the controllability of the transport equation

 $y_t - My_x = 0$ in $(0, T) \times (0, L)$



Nicolás Carreño - Universidad Técnica Federico Santa María

	Cost in the limit	
	0000 000000	

Some results

• For the heat equation:

$$\begin{cases} y_t - \varepsilon y_{xx} - My_x = 0 & \text{in } (0,T) \times (0,L), \\ y_{|x=0} = \mathbf{v}(t), \quad y_{|x=L} = 0 & \text{in } (0,T). \end{cases}$$

Coron, Guerrero (2005) proved

- 1. $T < L/|M| : C_{cost}^{\varepsilon} \ge \exp(C\varepsilon^{-1})$ if $M \neq 0$. 2. $T \ge KL/|M| : C_{cost}^{\varepsilon} \le \exp(-C\varepsilon^{-1})$ if K > 0 large (uniform contr.).
- For the classic KdV equation:

$$\begin{cases} y_t + \varepsilon y_{xxx} - My_x = 0 & \text{ in } (0,T) \times (0,L), \\ y_{|x=0} = v(t), \quad y_{|x=L} = 0, \quad y_{x|x=L} = 0 & \text{ in } (0,T), \end{cases}$$

Glass, Guerrero (2009) proved

1.
$$T < L/|M|$$
: $C_{cost}^{\varepsilon} \ge \exp(C\varepsilon^{-1/2})$ if $M \ne 0$.
2. $T \ge KL/M$: $C_{cost}^{\varepsilon} \le \exp(-C\varepsilon^{-1/2})$ if $M > 0, K > 0$ large (u. c.).

17/28

	Cost in the limit	
	0000 •000000	

Is it possible to obtain uniform controllability with respect to $\varepsilon \to 0^+$?

• $C_{cost}^{\varepsilon} \leq C_{\varepsilon} \exp(-C(T, M)\varepsilon^{-1/2})$, T large?

• A possible strategy is to combine an observability inequality:

 $\|\varphi_{|t=T/2}\|_{L^{2}(0,L)} \leq C_{\varepsilon} \exp\left(C\varepsilon^{-1/2}\right) \|\varphi_{xx|x=0}\|_{L^{2}(0,T)}$

with an exponential dissipation estimate (T | arge enough):

 $\|\varphi_{|t=0}\|_{L^{2}(0,L)} \leq C_{\varepsilon} \exp\left(-CT\varepsilon^{-1/2}\right) \|\varphi_{|t=T/2}\|_{L^{2}(0,L)}.$

- Observability OK.
- But, dissipation is not possible.

	Cost in the limit	
	0000 •000000	

Is it possible to obtain uniform controllability with respect to $\varepsilon \to 0^+$?

- $C_{cost}^{\varepsilon} \leq C_{\varepsilon} \exp(-C(T, M)\varepsilon^{-1/2})$, T large?
- A possible strategy is to combine an observability inequality:

$$\|\varphi_{|t=T/2}\|_{L^2(0,L)} \le C_{\varepsilon} \exp\left(C\varepsilon^{-1/2}\right) \|\varphi_{xx|x=0}\|_{L^2(0,T)}$$

with an exponential dissipation estimate (T large enough):

$$\|\varphi_{|t=0}\|_{L^{2}(0,L)} \leq C_{\varepsilon} \exp\left(-CT\varepsilon^{-1/2}\right) \|\varphi_{|t=T/2}\|_{L^{2}(0,L)}.$$

・ロト ・四ト ・ヨト ・ヨト

- Observability OK.
- But, dissipation is not possible.

	Cost in the limit	
	0000 •000000	

Is it possible to obtain uniform controllability with respect to $\varepsilon \to 0^+$?

- $C_{cost}^{\varepsilon} \leq C_{\varepsilon} \exp(-C(T, M)\varepsilon^{-1/2})$, T large?
- A possible strategy is to combine an observability inequality:

$$\|\varphi_{|t=T/2}\|_{L^2(0,L)} \le C_{\varepsilon} \exp\left(C\varepsilon^{-1/2}\right) \|\varphi_{xx|x=0}\|_{L^2(0,T)}$$

with an exponential dissipation estimate (T large enough):

$$\|\varphi_{|t=0}\|_{L^{2}(0,L)} \leq C_{\varepsilon} \exp\left(-CT\varepsilon^{-1/2}\right) \|\varphi_{|t=T/2}\|_{L^{2}(0,L)}.$$

- Observability OK.
- But, dissipation is not possible.

	Cost in the limit	
	0000 0 0 00000	

Non-uniform controllability result for arbitrary T > 0 and M > 0

Theorem¹ Let T, L, M > 0 and $\delta \in (0, 1)$. Then, there exists $\varepsilon_0 > 0$ such that

$$C_{cost}^{\varepsilon} \ge C \exp\left((1-\delta)LM^{1/2}\varepsilon^{-1/2}\right), \quad \forall \varepsilon \in (0,\varepsilon_0)$$

where C depends polynomially on ε^{-1} and ε .

19/28

Nicolás Carreño - Universidad Técnica Federico Santa María

	Cost in the limit	
	0000 00 0000	

An auxiliary problem

Find $u \in L^2(0,T)$ such that:

 $\left\{ \begin{array}{ll} w_t + \varepsilon w_{xxx} - M w_x = 0 & \mbox{in } (0,T) \times (\delta L,L), \\ w_{xx|x=\delta L} = u(t), & w_{x|x=L} = 0, & w_{xx|x=L} = 0 & \mbox{in } (0,T), \\ w_{|t=0} = w_0, & w_{|t=T} = 0 & \mbox{in } (\delta L,L). \end{array} \right.$

イロン イロン イヨン イヨン 三日

20/28

We define its cost: $K_{cost}^{\varepsilon} := \sup_{\substack{w_0 \in H_n^3(\delta L,L) \ w_0 \neq 0}} \min_{\substack{w \in L^2(0,T) \ w_{|t=T}=0}} \frac{\|u\|_{L^2(0,T)}}{\|w_0\|_{H_n^3(\delta L,L)}}.$

- We prove that $K_{cost}^{\varepsilon} \ge C \sinh\left((1-\delta)LM^{1/2}\varepsilon^{-1/2}\right)$.
- By setting $u := y_{xx|x=\delta L}$, we can prove that $K_{cost}^{\varepsilon} \lesssim C_{cost}^{\varepsilon}$.

	Cost in the limit	
	0000	

Particular solution for the adjoint equation

The adjoint equation is given by

$$\left\{ \begin{array}{ll} -\psi_t - \varepsilon \psi_{xxx} + M\psi_x = 0 & \text{in } (0,T) \times (\delta L,L), \\ \psi_{x|x=\delta L} = (\varepsilon \psi_{xx} - M\psi)_{|x=\delta L} = (\varepsilon \psi_{xx} - M\psi)_{|x=L} = 0 & \text{in } (0,T), \\ \psi_{|t=T} = \psi_T & \text{in } (\delta L,L). \end{array} \right.$$

イロン イロン イヨン イヨン 三日

21/28

 $\blacktriangleright \sup_{h \in H^3_n(\delta L,L)} \frac{\int_{\delta L}^L \psi_{|t=0} h}{\|h\|_{H^3_n(\delta L,L)}} \leq \varepsilon K^{\varepsilon}_{cost} \|\psi_{|x=\delta L}\|_{L^2(0,T)} \text{ (observability ineq.)}.$

•
$$\hat{\psi}(x) := \cosh\left((x - \delta L)M^{1/2}\varepsilon^{-1/2}\right)$$
 is a solution.

	Cost in the limit	
	0000 0000000	

An explosion result of the cost when M < 0

$$\left\{ \begin{array}{ll} y_t + \varepsilon y_{xxx} - My_x = 0 & \text{ in } (0,T) \times (0,L), \\ y_{|x=0} = \textbf{\textit{v}}(t), \quad y_{x|x=L} = 0, \quad y_{xx|x=L} = 0 & \text{ in } (0,T), \\ y_{|t=0} = y_0 & \text{ in } (0,L). \end{array} \right.$$

Theorem

Let M<0. Then, for every T< L/|M| there exist C>0 (independent of $\varepsilon)$ and $\varepsilon_0>0$ such that

$$C_{cost}^{\varepsilon} \ge \exp\left(C\varepsilon^{-1/2}\right), \quad \forall \varepsilon \in (0, \varepsilon_0).$$

• The idea is to construct a particular y_0 such that

$$\|v\|_{L^2(0,T)} \ge \exp\left(C\varepsilon^{-1/2}\right)\|y_0\|_{L^2(0,L)}$$

for every v driving y to zero.

Nicolás Carreño - Universidad Técnica Federico Santa María

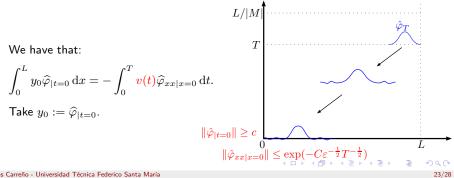
	Cost in the limit	
	0000 0000000	

Idea of proof

We construct a particular solution $\hat{\varphi}$ of

$$\begin{cases} -\varphi_t - \varepsilon \varphi_{xxx} + M\varphi_x = 0 & \text{ in } (0,T) \times (0,L), \\ \varphi_{|x=0} = 0, \quad \varphi_{x|x=0} = 0, \quad (\varepsilon \varphi_{xx} - M\varphi)_{|x=L} = 0 & \text{ in } (0,T), \\ \varphi_{|t=T} = \hat{\varphi}_T & \text{ in } (0,L), \end{cases}$$

where
$$0 \leq \hat{\varphi}_T \in \mathcal{C}_0^{\infty}(0, L)$$
, $\|\hat{\varphi}_T\|_{L^2(0, L)} = 1$.



	Cost in the limit	
	0000 000000●	

A uniform null controllability result²

If T large enough and

$$\begin{cases} y_t + \varepsilon y_{xxx} - My_x = 0 & \text{in } (0,T) \times (0,L), \\ y_{|x=0} = v_0(t), \quad y_{x|x=L} = v_1(t), \quad y_{xx|x=L} = v_2(t) & \text{in } (0,T), \\ y_{|t=0} = y_0, \quad y_{|t=T} = 0 & \text{in } (0,L). \end{cases}$$

• We can prove, with $v_1(t) = 0$:

 $\|\boldsymbol{v}_0\|_{L^2(0,T)} + \|\boldsymbol{v}_2\|_{L^2(0,T)} \le C_{\varepsilon} \exp\left(-C(T,M)\varepsilon^{-1/2}\right) \|\boldsymbol{y}_0\|_{L^2(0,\delta L)}$

• Also, we can prove, with $v_0(t) = 0$:

 $\|\boldsymbol{v}_1\|_{L^2(0,T)} + \|\boldsymbol{v}_2\|_{L^2(0,T)} \le C_0 \exp\left(-C(T,M)\varepsilon^{-1/2}\right)\|y_0\|_{L^2(0,\delta L)}.$

• y_0 supported in $(0, \delta L)$, $\delta \in (0, 1)$.

²C., Guerrero. Uniform null controllability of a linear KdV equation using two controls. Preprint. In the second second

	0000 000000

Final comments

イロト イヨト イヨト イヨト

э

25/28

Outline

Introduction

An estimation of the cost of null controllability

Behavior of the cost in the vanishing dispersion limit

Final comments

		Final comments
	0000 0000000	000

Summary

$$\left\{ \begin{array}{ll} y_t + \varepsilon y_{xxx} - My_x = 0 & \qquad \mbox{in } (0,T) \times (0,L), \\ y_{|x=0} = {\color{black} v(t)}, \quad y_{x|x=L} = 0, \quad y_{xx|x=L} = 0 & \mbox{in } (0,T), \\ y_{|t=0} = y_0 & \qquad \mbox{in } (0,L). \end{array} \right.$$

• We prove that there exists y_0 such that for every v driving y to 0

$$\|v\|_{L^{2}(0,T)} \ge \exp\left(C\varepsilon^{-1/2}\right)\|y_{0}\|_{L^{2}(0,L)}, \quad \varepsilon \text{ small},$$

in two cases:

- ▶ *M* > 0, *T* > 0.
- M < 0, T < L/|M|.
- If we allow to control $y_{xx|x=L}$ and y_0 supported in $(0, \delta L)$, the controls remain bounded with respect to ε if T is large enough.

Introduction 000

★ロト ★御 と ★ 注 と ★ 注 と … 注

27/28

Open problem

or

$$\begin{cases} y_t + \varepsilon y_{xxx} - My_x = 0 & \text{in } (0,T) \times (0,L), \\ y_{|x=0} = v_0(t), \quad y_{x|x=L} = v_1(t), \quad y_{xx|x=L} = 0 & \text{in } (0,T), \\ y_{|t=0} = y_0, \quad y_{|t=T} = 0 & \text{in } (0,L). \\ \|v_0\|_{L^2(0,T)} + \|v_1\|_{L^2(0,T)} \le C_0 \exp\left(-C\varepsilon^{-1/2}\right) \|y_0\|_{L^2(0,L)}? \end{cases}$$

$$\|\boldsymbol{v}_0\|_{L^2(0,T)} + \|\boldsymbol{v}_1\|_{L^2(0,T)} \ge C_0 \exp\left(C\varepsilon^{-1/2}\right) \|\boldsymbol{y}_0\|_{L^2(0,L)}?$$

・ロト ・御 ト ・ ヨト ・ ヨト … ヨ

28/28

Thank you for your attention

Nicolás Carreño - Universidad Técnica Federico Santa María