Boundary null-controllability of a system coupling fourth- and second-order parabolic equations

Nicolás Carreño Departamento de Matemática Universidad Técnica Federico Santa María

XXXII Jornada de Matemática de la Zona Sur Sesión Ecuaciones Diferenciales Parciales

April 25th, 2019

Outline

Introduction

A cascade system

Nicolás Carreño - Universidad Técnica Federico Santa María

Boundary null-controllability of a system coupling fourth- and second-order parabolic equations

2/17

◆□ → ◆圖 → ◆臣 → ◆臣 → □臣

Control problem for the (1D) heat equation

Distributed control:

$$\left\{ \begin{array}{ll} u_t - u_{xx} = f \, 1_\omega, & t \in (0,T), \, x \in (0,L), \\ u(t,0) = 0, \, u(t,\pi) = 0 & t \in (0,T), \\ u(0,x) = u_0(x), & x \in (0,L). \end{array} \right.$$

Boundary control:

$$\begin{cases} u_t - u_{xx} = 0, & t \in (0,T), x \in (0,L), \\ u(t,0) = h(t), u(t,L) = 0 & t \in (0,T), \\ u(0,x) = u_0(x), & x \in (0,L). \end{cases}$$

Null-controllability problem: Given T > 0 and initial condition $u_0(x)$, can we find a control (f or h) such that the associated solution satisfies u(T, x) = 0?

Nicolás Carreño - Universidad Técnica Federico Santa María

3

・ロト ・四ト ・ヨト ・ヨト

Introduction 000

Goal of this talk

<u>Goal of this talk:</u> To present some controllability results concerning systems coupling (one-dimensional) fourth- and second-order parabolic equations. For instance:

$$\begin{array}{ll} & u_t + u_{xxxx} = 0 & \mbox{in } (0,T) \times (0,L), \\ & u(0,t) = 0, u(L,t) = 0 & \mbox{in } (0,T), \\ & u_x(0,t) = 0, u_x(L,t) = 0 & \mbox{in } (0,T), \\ & u(x,0) = u_0(x) & \mbox{in } (0,L), \end{array}$$

and

$$\left\{ \begin{array}{ll} v_t - v_{xx} = 0 & \mbox{in } (0,T) \times (0,L), \\ v(0,t) = 0, v(L,t) = 0 & \mbox{in } (0,T), \\ v(x,0) = v_0(x) & \mbox{in } (0,L). \end{array} \right.$$

Nicolás Carreño - Universidad Técnica Federico Santa María

3

▲□ → ▲圖 → ▲ 画 → ▲ 画 →

Goal of this talk

- Many possibilities:
 - Different kinds of coupling.
 - Distributed controls (In which equation? both? just one?).
 - Boundary controls (Where in the boundary? everywhere or just some?)
- Here we will focus on two types of problem, which are treated with two methods:
 - One distributed control with first-order coupling (Carleman estimates).
 - One boundary control for a cascade system (Moments method).

イロト 不得 トイヨト イヨト

Stabilized Kuramoto-Sivashinsky system in a bounded domain

Consider the fourth-second-order parabolic system:

$$\left\{ \begin{array}{ll} u_t + \gamma u_{xxxx} + u_{xxx} + au_{xx} + uu_x = v_x + f \mathbbm{1}_\omega & \text{ in } (0,T) \times (0,L), \\ v_t - \Gamma v_{xx} + cv_x = u_x + h \mathbbm{1}_\omega & \text{ in } (0,T) \times (0,L), \\ u(0,t) = u_x(0,t) = 0, \quad u(L,t) = u_x(L,t) = 0 & \text{ in } (0,T), \\ v(0,t) = 0, \quad v(L,t) = 0 & \text{ in } (0,T), \\ u(x,0) = u_0(x), \quad v(x,0) = v_0(x) & \text{ in } (0,L), \end{array} \right.$$

where $\gamma, a, \Gamma > 0$ and $c \in \mathbb{R}$ are fixed parameters, and f and h are the controls acting on $\omega \subset (0, L)$. Of course, the interesting case is when

•
$$h \equiv 0$$
; or

•
$$f \equiv 0$$
.

Nicolás Carreño - Universidad Técnica Federico Santa María

・ロト ・聞 ト ・ヨト ・ヨト

Introduction 000

Distributed controls

$$\left\{ \begin{array}{ll} u_t + \gamma u_{xxxx} + u_{xxx} + au_{xx} + uu_x = v_x + f\mathbbm{1}_\omega & \mbox{in } (0,T)\times(0,L), \\ v_t - \Gamma v_{xx} + cv_x = u_x + h\mathbbm{1}_\omega & \mbox{in } (0,T)\times(0,L). \end{array} \right.$$

Theorem (Cerpa-Mercado-Pazoto (2015), C-Cerpa (2016))

Let T > 0. Then, there exists $\delta > 0$ such that for any initial conditions $u_0 \in H^{-2}(0,L)$ and $v_0 \in H^{-1}(0,L)$ verifying

$$||u_0||_{H^{-2}(0,L)} + ||v_0||_{H^{-1}(0,L)} \le \delta,$$

there exists a control pair

$$(f,0)$$
 or $(0,h)$ in $L^2(\omega \times (0,L))$

such that the solution

 $(u,v)\in L^2((0,T)\times (0,L))^2\cap C([0,T];H^{-2}(0,L)\times H^{-1}(0,L))$ of the SKS system satisfies

$$u(\cdot,T)=0$$
 and $v(\cdot,T)=0$ in $(0,L)$.

Nicolás Carreño - Universidad Técnica Federico Santa María

Boundary controls

Similar result using Carleman estimates for the system:

ſ	$u_t + \gamma u_{xxxx} + u_{xxx} + au_{xx} + uu_x = v_x$	in $(0,T) \times (0,L)$,
ł	$v_t - \Gamma v_{xx} + cv_x = u_x$	in $(0,T) \times (0,L)$,
	$u(0,t) = h_1(t), u(L,t) = 0$	in $(0,T)$,
	$u_x(0,t) = h_2(t), u_x(L,t) = 0$	in $(0,T)$,
	$v(0,t) = h_3(t), v(L,t) = 0$	in $(0,T)$,
l	$u(x,0) = u_0(x), v(x,0) = v_0(x)$	in $(0, L)$.

Local null-controllability result from Cerpa-Mercado-Pazoto (2012).

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

A cascade system with one control

Consider the system

$$\begin{cases} u_t + u_{xxxx} = v, & t \in (0,T), \ x \in (0,\pi), \\ v_t - dv_{xx} = 0, & t \in (0,T), \ x \in (0,\pi), \\ u(t,0) = u_{xx}(t,0) = 0, & t \in (0,T), \\ u(t,\pi) = u_{xx}(t,\pi) = 0, & t \in (0,T), \\ v(t,0) = h(t), \ v(t,\pi) = 0, & t \in (0,T). \end{cases}$$

<u>Goal</u>: Study controllability properties in terms of the diffusion coefficient d > 0 using the moment method, introduced by Fattorini and Russell (1971).

3

・ロト ・聞 ト ・ヨト ・ヨト

Quick overview of the Moment Method

Consider the one-dimensional heat equation with a boundary control:

$$\begin{cases} u_t - u_{xx} = 0, & t \in (0,T), x \in (0,\pi), \\ u(t,0) = h(t), u(t,\pi) = 0 & t \in (0,T), \\ u(0,x) = u_0(x), & x \in (0,\pi). \end{cases}$$

Null-controllability at time T > 0 is equivalent to

$$\int_0^T h(t)\varphi_x(t,0) \, \mathrm{d}t = -\int_0^L u_0(x)\varphi(0,x) \, \mathrm{d}x, \quad \forall \varphi_T \in L^2(0,\pi),$$

where φ is the solution of the adjoint equation

$$\begin{cases} -\varphi_t - \varphi_{xx} = 0, & t \in (0,T), x \in (0,\pi), \\ \varphi(t,0) = \varphi(t,\pi) = 0, & t \in (0,T), \\ \varphi(T,x) = \varphi_T(x), & x \in (0,\pi). \end{cases}$$

Nicolás Carreño - Universidad Técnica Federico Santa María

3

▲□ → ▲圖 → ▲ 圖 → ▲ 圖 →

0

11/17

Quick overview of the Moment Method

Using that the eigenfunctions $\{\sin(kx)\}_{k\geq 1}$ of $-\partial_{xx}$ is a basis of $L^2(0,\pi)$, writing $u_0(x) = \sum_{k\geq 1} a_k \sin(kx)$, the null-controllability is equivalent to the moment problem

$$k \int_0^T h(t) e^{-k^2(T-t)} dt = e^{-k^2 T} a_k dx, \quad \forall k \ge 1,$$

or

$$k \int_0^T \tilde{h}(t) e^{-k^2 t} dt = e^{-k^2 T} a_k dx, \quad \forall k \ge 1.$$

Then, the problem is to find a family $\{q_k(t)\}_{k\geq 1}$ biorthogonal to $\{e^{-k^2t}\}_{k\geq 1}$, and such that for any $\varepsilon > 0$:

$$||q_k||_{L^2(0,T)} \le C(\varepsilon,T)e^{\varepsilon k^2}, \quad \forall k \ge 1.$$

Then:

$$h(t) := \tilde{h}(T-t) = \sum_{k \ge 1} b_k q_k (T-t) \in L^2(0,T), \quad \text{with } b_k = \frac{e^{-k^2 T} a_k}{k}.$$

Nicolás Carreño - Universidad Técnica Federico Santa María

12/17

(□) (@) (E) (E) [

General result for the existence of biorthogonal families

Fattorini and Russell proved a general result on existence of a biorthogonal family to $\{e^{-\lambda_k t}\}_{k\geq 1}$ in $L^2(0,T)$ for a positive sequence $\Lambda = \{\lambda_k\}_{k\geq 1}$ such that satisfies:

$$\begin{split} & \blacktriangleright \sum_{k \ge 1} \frac{1}{\lambda_k} < +\infty. \\ & \blacktriangleright |\lambda_k - \lambda_m| \ge \rho |k - m|, \quad \forall k, m \ge 1 \text{ (Gap condition).} \end{split}$$

Of course, $\Lambda=\{k^2\}_{k\geq 1}$ fulfills these properties and the previous control satisfies

$$||h||_{L^2(0,T)} \le C(\varepsilon,T) \sum_{k\ge 1} \frac{|a_k|}{k} e^{-k^2(T-\varepsilon)}.$$

Nicolás Carreño - Universidad Técnica Federico Santa María

Extensions to systems

$$\begin{cases} y_t - (D\partial_{xx}^2 + A)y = 0, & t \in (0,T), \ x \in (0,\pi), \\ y(t,0) = Bh(t), \ y(t,L) = 0 & t \in (0,T), \\ y(0,x) = y_0(x), & x \in (0,\pi). \end{cases}$$

where $D = diag(d_1, \ldots, d_n)$, $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$.

Some results:

- Fernández-Cara et al. (2010). D = Id, n = 2, m = 1.
- Ammar-Khodja et al. (2011). Generalization $D = Id, n \ge 2, m \ge 1$.

In these works, the eigenvalues of $D\partial_{xx}^2 + A$ satisfy the gap condition, which allows to have controllability for any T > 0.

Nicolás Carreño - Universidad Técnica Federico Santa María

Back to our system

$$\begin{cases} u_t + u_{xxxx} = v, & t \in (0,T), \ x \in (0,\pi), \\ v_t - dv_{xx} = 0, & t \in (0,T), \ x \in (0,\pi), \\ u(t,0) = u_{xx}(t,0) = 0, & t \in (0,T), \\ u(t,\pi) = u_{xx}(t,\pi) = 0, & t \in (0,T), \\ v(t,0) = h(t), \ v(t,\pi) = 0, & t \in (0,T). \end{cases}$$

- The eigenvalues are given by $\Lambda = \{k^4, dk^2\}_{k \ge 1}$.
- Ideas from [Ammar-Khodja, Benabdallah, González-Burgos, de Teresa, 2014].
- A first result: If √d is rational, the system is not approximate-controllable.
 We can construct a solution of the adjoint system such that the unique continuation does not hold.

(□) (@) (E) (E) [

000	
000	

Condensation index and minimal time of controllability

- We assume that d is irrational. Therefore, the family $\Lambda = \{k^4, dk^2\}_{k \ge 1}$ has no repeated elements.
- ▶ In this case, there exists a biorthogonal family $\{q_k\}_{k\geq 1}$ to $\{e^{-\lambda_k t}\}_{k\geq 1}$.
- ▶ The gap condition may not be satisfied. However, it can be proved that

$$||q_k||_{L^2(0,T)} \le C(\varepsilon,T)e^{(c(\Lambda)+\varepsilon)\lambda_k}$$

where $c(\Lambda)$ is the condensation index of the sequence Λ . Roughly speaking, $c(\Lambda)$ is a measure of the way how λ_k approaches λ_m for $k \neq m$.

- \blacktriangleright Notice that $c(\Lambda)$ is the minimal time of null-controllability in the sense that:
 - The system is null-controllable if $T > c(\Lambda)$.
 - System is not null-controllable if $T < c(\Lambda)$.
- ▶ In particular, if Λ satisfies de gap condition: $c(\Lambda) = 0$ and the system is controllable at any time T > 0.

イロト 不得下 イヨト イヨト 二日

1

1 21

Characterization of the condensation index

From the two branches of $\Lambda = \{k^4, dk^2\}_{k \ge 1}$, we have $c(\Lambda) = \max\{c_1, c_2\}$, where

$$c_1 := \limsup_{k \to \infty} \frac{-\ln|\sin\left(\pi\sqrt{k}\sqrt[4]{d}\right)|}{dk^2} \quad \text{and} \quad c_2 := \limsup_{k \to \infty} \frac{-\ln\left|\sin\left(\frac{\pi k^2}{\sqrt{d}}\right)\right|}{k^4}$$

With this characterization c(Λ), we can prove that for any T₀ ∈ [0, +∞], there exists d irrational such that T₀ = c(Λ).

Theorem (C., Cerpa, Mercado (submitted))

There are d > 0 irrational such that the system:

- 1. is null-controllable in time T for any T > 0;
- 2. for a given $T_0 > 0$, is null-controllable in time T if $T > T_0$ and is not null-controllable if $T < T_0$; and
- 3. is not null-controllable.
- The previous result depends on how well *d* is approximated by rational numbers (technical lemmas coming from number theory).

Nicolás Carreño - Universidad Técnica Federico Santa María

17/17

★ロト ★御 と ★ 注 と ★ 注 と … 注

Thank you

Nicolás Carreño - Universidad Técnica Federico Santa María