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Introduction Control of fluids

Observability and Carleman estimates

PDE control

Example: Heat equation

Consider a regular open Ω ⊂ RN and ω ⊂ Ω (control domain)
yt −∆y = v1ω (x, t) ∈ Ω× (0, T ),
y = 0 x ∈ ∂Ω,
y(0) = y0 x ∈ Ω.

I y = y(x, t) : Temperature distribution.

I v = v(x, t) : Control supported in ω.

Question: Given T > 0 and y1 = y1(x), is there v such that y(T ) = y1?
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Observability and Carleman estimates

PDE control

Answer: In general, the answer is no due to the regularizing effect.

• It seems natural to consider the notion of control to the trajectories:
Consider a solution of

ȳt −∆ȳ = 0 (x, t) ∈ Ω× (0, T ),
ȳ = 0 x ∈ ∂Ω,
ȳ(0) = ȳ0 x ∈ Ω,

We look for a control v such that y(T ) = ȳ(T ).

• By linearity (taking ỹ := y − ȳ), this is equivalent to the null controllability:

y(T ) = 0.

Therefore, we concentrate in this case.
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Observability and Carleman estimates

Duality Method: Hilbert Uniqueness Method (HUM)

Construction of the control:

• We multiply yt −∆y = v1ω by ϕ solution to the (adjoint) equation
−ϕt −∆ϕ = 0 (x, t) ∈ Ω× (0, T ),
ϕ = 0 x ∈ ∂Ω,
ϕ(T ) = ϕT ∈ L2(Ω) x ∈ Ω,

and integrate in Ω× (0, T ):∫
Ω

y(T )ϕT dx =

∫∫
ω×(0,T )

vϕdxdt+

∫
Ω

y0ϕ(0) dx, ∀ϕT ∈ L2(Ω).

• v is a control such that y(T ) = 0 if and only if∫∫
ω×(0,T )

vϕdxdt+

∫
Ω

y0ϕ(0) dx = 0, ∀ϕT ∈ L2(Ω).
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Observability and Carleman estimates

Observability inequality

The previous condition can be seen as an optimality condition for

J(ϕT ) =
1

2

∫∫
ω×(0,T )

|ϕ|2 dx dt+

∫
Ω

y0ϕ(0) dx.

• J convex, continuous and coercive if there exists C > 0 such that∫
Ω

|ϕ(0)|2 dx ≤ C
∫∫

ω×(0,T )

|ϕ|2 dxdt.

This is known as observability inequality.

• The control is given by
v := ϕ̂,

where ϕ̂ is the solution of the adjoint equation associated to ϕ̂T , minimum
of J .

• Null controllability is equivalent to observability.
Nicolás Carreño - Universidad Técnica Federico Santa Maŕıa 7/20
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Observability and Carleman estimates

Carleman estimates

How to prove the observability inequality?

Powerful tool to prove observability: Carleman estimates

· · ·+
∫∫

Ω×(0,T )

ρ|ϕ|2 dxdt ≤ C
∫∫

Ω×(0,T )

ρ|ϕt + ∆ϕ|2 dxdt+ C

∫∫
ω0×(0,T )

ρ|ϕ|2 dxdt

I ϕ(x, t) = 0, x ∈ ∂Ω.

I ρ = ρ(x, t) is a positive function and continuous in Ω× (0, T ) with critical
points only in ω0 ⊂ ω.

I To deduce the observability, we use dissipation properties as∫
Ω

|ϕ(0)|2 dx ≤
∫

Ω

|ϕ(t)|2 dx, t ∈ (0, T ).
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Systems

Control of a system of two equations with one control

Consider the system with one scalar control
yt −∆y = z + v1ω (x, t) ∈ Ω× (0, T ),
zt −∆z = y1O (x, t) ∈ Ω× (0, T ),
y = z = 0 x ∈ ∂Ω,
y(0) = y0, z(0) = z0 x ∈ Ω.

• We look for v such that y(T ) = z(T ) = 0.
• Observability inequality: There exists C > 0 such that∫

Ω

(
|ϕ(0)|2 + |ψ(0)|2

)
dx ≤ C

∫∫
ω×(0,T )

|ϕ|2 dxdt

where (ϕ,ψ) is the solution to the adjoint system
−ϕt −∆ϕ = ψ1O (x, t) ∈ Ω× (0, T ),
−ψt −∆ψ = ϕ (x, t) ∈ Ω× (0, T ),
ϕ = ψ = 0 x ∈ ∂Ω,
ϕ(T ) = ϕT , ψ(T ) = ψT x ∈ Ω.
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Systems

Control of a system of two equations with one control

• The idea is to combine Carleman estimates for ϕ and ψ:∫∫
Ω×(0,T )

ρ1|ϕ|2 dx dt ≤ C
∫∫

Ω×(0,T )

ρ2|ψ|2 dx dt+ C

∫∫
ω0×(0,T )

ρ1|ϕ|2 dxdt

∫∫
Ω×(0,T )

ρ1|ψ|2 dx dt ≤ C
∫∫

Ω×(0,T )

ρ2|ϕ|2 dx dt+ C

∫∫
ω0×(0,T )

ρ1|ψ|2 dxdt

• Estimate the local term of ψ: ψ = −ϕt −∆ϕ in O.
• We assume ω ∩ O 6= ∅ and choose ω0 ⊂ Ω ∩ O.∫∫

ω0×(0,T )

ρ1|ψ|2 dxdt =

∫∫
ω0×(0,T )

ρ1ψ(−ϕt −∆ϕ) dx dt

≤ 1

2C

∫∫
ω0×(0,T )

ρ1|ψ|2 dx dt+ C

∫∫
ω0×(0,T )

ρ1|ϕ|2 dxdt.
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Control of parabolic systems and some applications to the control of fluids



Introduction Control of fluids

Some systems from fluid mechanics (N = 2 or 3)

• Navier-Stokes system (N scalar controls){
yt −∆y + (y · ∇)y +∇p = v1ω, ∇ · y = 0 (x, t) ∈ Ω× (0, T ),
y = 0 x ∈ ∂Ω.

I y = y(x, t) ∈ RN : Velocity field of the fluid.

I v ∈ RN is the control.

• Boussinesq system (N + 1 scalar controls)
yt −∆y + (y · ∇)y +∇p = v1ω + θ eN , ∇ · y = 0 (x, t) ∈ Ω× (0, T ),
θt −∆θ + y · ∇θ = v01ω (x, t) ∈ Ω× (0, T ),
y = 0, θ = 0 x ∈ ∂Ω.

I θ = θ(x, t) ∈ R: Temperature of the fluid.

I v0 ∈ R: Control acting on the temperature.

Question: Is it possible to control these systems with less scalar controls?
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Null controllability of the Navier-Stokes system


yt −∆y + (y · ∇)y +∇p = v1ω, ∇ · y = 0 (x, t) ∈ Ω× (0, T ),
y = 0 x ∈ ∂Ω
y(0) = y0 x ∈ Ω.

I i0 ∈ {1, . . . , N}, T > 0 y ω ⊂ Ω.

I C. Guerrero (2012)1: There is a δ > 0 such that if ‖y0‖ ≤ δ, then there is
a control v, with vi0 ≡ 0, and an associated solution (y, p) such that

y(T ) = 0.

Idea:

• Control of the linearized system around zero: yt −∆y +∇p = v1ω.

• Go back to the nonlinear system using a local inversion argument.

1C., Guerrero. Local null controllability of the N-dimensional Navier-Stokes system with N-1
scalar controls in an arbitrary control domaine. J. Math. Fluid Mech, 2013.
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Control of parabolic systems and some applications to the control of fluids



Introduction Control of fluids

Navier-Stokes system. Case N = 2.

• y = (y1, y2), v = (v1, 0).{
yt −∆y + (y · ∇)y +∇p = (v1, 0)1ω, ∇ · y = 0 (x, t) ∈ Ω× (0, T ),
y = 0 x ∈ ∂Ω.

• Linearization around zero:{
yt −∆y +∇p = (v1, 0)1ω, ∇ · y = 0 (x, t) ∈ Ω× (0, T ),
y = 0 x ∈ ∂Ω.

• Observability inequality:∫
Ω

(
|ϕ1(0)|2 + |ϕ2(0)|2

)
dx ≤ C

∫∫
ω×(0,T )

|ϕ1|2 dxdt

where ϕ = (ϕ1, ϕ2) is the solution to the adjoint system{
−ϕt −∆ϕ+∇π = 0, ∇ · ϕ = 0 (x, t) ∈ Ω× (0, T ),
ϕ = 0 x ∈ ∂Ω.
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Navier-Stokes system. Case N = 2.

I No coupling between ϕ1 and ϕ2? Yes: ∂1ϕ1 + ∂2ϕ2 = 0.

I Carleman estimate for ϕ1. Since ∆π = 0, we have

−(∆ϕ1)t −∆(∆ϕ1) = 0,

but no boundary condition for ∆ϕ1.

I Carleman estimate with nonhomogenous boundary conditions:

· · ·+
∫∫

Ω×(0,T )

ρ1|∆ϕ1|2 dx dt ≤ C
∫∫

ω0×(0,T )

ρ1|∆ϕ1|2 dxdt+ b.t.

I Recover ϕ2 from ϕ|∂Ω = 0 and ∂1ϕ1 + ∂2ϕ2 = 0.
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Boussinesq system


yt −∆y + (y · ∇)y +∇p = v1ω + θ eN , ∇ · y = 0 (x, t) ∈ Ω× (0, T ),
θt −∆θ + y · ∇θ = v01ω (x, t) ∈ Ω× (0, T ),
y = 0, θ = 0 x ∈ ∂Ω
y(0) = y0, θ(0) = θ0 x ∈ Ω.

I i0 ∈ {1, . . . , N − 1}, T > 0 y ω ⊂ Ω.

I C. (2012)2: There is a δ > 0 such that if ‖(y0, θ0)‖ ≤ δ, there are controls
v0 and v, with vi0 ≡ vN ≡ 0, and an associated solution (y, p, θ) such that

y(T ) = 0 y θ(T ) = 0.

2C. Local controllability of the N-dimensional Boussinesq system with N-1 scalar controls in an
arbitrary control domain. Math. Control Relat. Fields, 2012.
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Introduction Control of fluids

Boussinesq system. Case N = 2.

• y = (y1, y2), θ ∈ R, v0 ∈ R.{
yt −∆y + (y · ∇)y +∇p = (0, θ), ∇ · y = 0 (x, t) ∈ Ω× (0, T ),
θt −∆θ + y · ∇θ = v01ω (x, t) ∈ Ω× (0, T ).

• Linearization around zero:{
yt −∆y +∇p = (0, θ), ∇ · y = 0 (x, t) ∈ Ω× (0, T ),
θt −∆θ = v01ω (x, t) ∈ Ω× (0, T ).

• Observability inequality:∫
Ω

(
|ϕ1(0)|2 + |ϕ2(0)|2 + |θ(0)|2

)
dx ≤ C

∫∫
ω×(0,T )

|θ|2 dxdt

where (ϕ, θ) = (ϕ1, ϕ2, θ) is the solution to the adjoint system{
−ϕt −∆ϕ+∇π = 0, ∇ · ϕ = 0 (x, t) ∈ Ω× (0, T ),
−θt −∆θ = ϕ2 (x, t) ∈ Ω× (0, T ).
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Boussinesq system. Case N = 2.

I We combine the previous ideas.

I Carleman for ϕ2 and θ:

· · ·+
∫∫

Ω×(0,T )

ρ1|∆ϕ2|2 dx dt ≤ C
∫∫

ω0×(0,T )

ρ1|∆ϕ2|2 dxdt+ b.t.

· · ·+
∫∫

Ω×(0,T )

ρ1|θ|2 dx dt ≤ C
∫∫

ω0×(0,T )

ρ1|θ|2 dx dt

I Recover ϕ1 from ϕ|∂Ω = 0 and ∂1ϕ1 + ∂2ϕ2 = 0.

I Use the equation ϕ2 = −θt −∆θ.
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Some comments

This method has its limitations:

I Seems difficult to consider a control like v = (v1, 0, 0).
[Coron, Lissy, 2014]: Return method.

I Controllability to trajectories for Navier-Stokes:
Adjoint equation:

−ϕt −∆ϕ+ ȳ · (∇ϕ+∇tϕ) +∇π = 0.

Problem: The components of ϕ are mixed.

I Boundary controllability with one vanishing component (taking the trace
of an extended controlled solution does not work).
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Thank you
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