Boundary null-controllability of a system coupling fourth- and second-order parabolic equations

Nicolás Carreño

Departamento de Matemática Universidad Técnica Federico Santa María

French Latin-American Conference on New Trends in Applied Mathematics 2019 Workshop Mathematical Mechanics and Inverse Problems Control of PDEs session

November 6th, 2019

Outline

Introduction

A cascade system

Goal of this talk

<u>Goal of this talk:</u> To present some controllability results concerning systems coupling (one-dimensional) fourth- and second-order parabolic equations. For instance:

$$\left\{ \begin{array}{ll} u_t + u_{xxxx} = 0 & \text{in } (0,T) \times (0,L), \\ u(0,t) = 0, u(L,t) = 0 & \text{in } (0,T), \\ u_x(0,t) = 0, u_x(L,t) = 0 & \text{in } (0,T), \\ u(x,0) = u_0(x) & \text{in } (0,L), \end{array} \right.$$

and

$$\left\{ \begin{array}{ll} v_t - v_{xx} = 0 & \text{in } (0,T) \times (0,L), \\ v(0,t) = 0, v(L,t) = 0 & \text{in } (0,T), \\ v(x,0) = v_0(x) & \text{in } (0,L). \end{array} \right.$$

Goal of this talk

- Many possibilities:
 - Different kinds of coupling.
 - Distributed controls (In which equation? both? just one?).
 - ▶ Boundary controls (Where in the boundary? everywhere or just some?)
- Here we will focus on two types of problems, which are treated with two methods:
 - One distributed control with first-order coupling (Carleman estimates).
 - One boundary control for a cascade system (Moments method).

Stabilized Kuramoto-Sivashinsky system in a bounded domain

Consider the fourth-second-order parabolic system:

$$\left\{ \begin{array}{ll} u_t + \gamma u_{xxxx} + u_{xxx} + a u_{xx} + u u_x = v_x + f \mathbb{1}_\omega & \text{in } (0,T) \times (0,L), \\ v_t - \Gamma v_{xx} + c v_x = u_x + h \mathbb{1}_\omega & \text{in } (0,T) \times (0,L), \\ u(0,t) = u_x(0,t) = 0, \quad u(L,t) = u_x(L,t) = 0 & \text{in } (0,T), \\ v(0,t) = 0, \quad v(L,t) = 0 & \text{in } (0,T), \\ u(x,0) = u_0(x), \quad v(x,0) = v_0(x) & \text{in } (0,L), \end{array} \right.$$

where $\gamma,a,\Gamma>0$ and $c\in\mathbb{R}$ are fixed parameters, and f and h are the controls acting on $\omega\subset(0,L)$.

Of course, the interesting case is when

- ▶ $h \equiv 0$; or
- $ightharpoonup f \equiv 0.$

Distributed controls

$$\left\{ \begin{array}{ll} u_t + \gamma u_{xxxx} + u_{xxx} + a u_{xx} + u u_x = v_x + f \mathbb{1}_\omega & \text{in } (0,T) \times (0,L), \\ v_t - \Gamma v_{xx} + c v_x = u_x + h \mathbb{1}_\omega & \text{in } (0,T) \times (0,L). \end{array} \right.$$

Theorem (Cerpa-Mercado-Pazoto (2015), C-Cerpa (2016))

Let T>0. Then, there exists $\delta>0$ such that for any initial conditions $u_0\in H^{-2}(0,L)$ and $v_0\in H^{-1}(0,L)$ verifying

$$||u_0||_{H^{-2}(0,L)} + ||v_0||_{H^{-1}(0,L)} \le \delta,$$

there exists a control pair

$$(f,0)$$
 or $(0,h)$ in $L^2(\omega \times (0,L))$

such that the solution

 $(u,v) \in L^2((0,T) \times (0,L))^2 \cap C([0,T];H^{-2}(0,L) \times H^{-1}(0,L))$ of the SKS system satisfies

$$u(\cdot,T)=0$$
 and $v(\cdot,T)=0$ in $(0,L)$.

Boundary controls

Similar result using Carleman estimates for the system:

$$\begin{cases} u_t + \gamma u_{xxxx} + u_{xxx} + a u_{xx} + u u_x = v_x + f \mathbb{1}_\omega & \text{in } (0,T) \times (0,L), \\ v_t - \Gamma v_{xx} + c v_x = u_x + h \mathbb{1}_\omega & \text{in } (0,T) \times (0,L), \\ u(0,t) = h_1(t), & u(L,t) = 0 & \text{in } (0,T), \\ u_x(0,t) = h_2(t), & u_x(L,t) = 0 & \text{in } (0,T), \\ v(0,t) = h_3(t), & v(L,t) = 0 & \text{in } (0,T), \\ u(x,0) = u_0(x), & v(x,0) = v_0(x) & \text{in } (0,L). \end{cases}$$

Local null-controllability result from Cerpa-Mercado-Pazoto (2012).

A cascade system with one control

Consider the system

$$\begin{cases} u_t + u_{xxxx} = v, & t > 0, \ x \in (0, \pi), \\ v_t - dv_{xx} = 0, & t > 0, \ x \in (0, \pi), \\ u(t, 0) = u_{xx}(t, 0) = 0, & t > 0, \\ u(t, \pi) = u_{xx}(t, \pi) = 0, & t > 0, \\ v(t, 0) = h(t), \ v(t, \pi) = 0, & t > 0. \end{cases}$$

<u>Goal</u>: Study controllability properties in terms of the diffusion coefficient d>0 using the moment method, introduced by Fattorini and Russell (1971).

Quick overview of the Moment Method

Consider the one-dimensional heat equation with a boundary control:

$$\begin{cases} u_t - u_{xx} = 0, & t \in (0, T), x \in (0, \pi), \\ u(t, 0) = h(t), u(t, \pi) = 0 & t \in (0, T), \\ u(0, x) = u_0(x), & x \in (0, \pi). \end{cases}$$

Null-controllability at time T>0 is equivalent to

$$\int_0^T h(t)\varphi_x(t,0) dt = -\int_0^L u_0(x)\varphi(0,x) dx, \quad \forall \varphi_T \in L^2(0,\pi),$$

where $\boldsymbol{\varphi}$ is the solution of the adjoint equation

$$\begin{cases} -\varphi_t - \varphi_{xx} = 0, & t \in (0,T), x \in (0,\pi), \\ \varphi(t,0) = \varphi(t,\pi) = 0, & t \in (0,T), \\ \varphi(T,x) = \varphi_T(x), & x \in (0,\pi). \end{cases}$$

Quick overview of the Moment Method

Using that the eigenfunctions $\{\sin(kx)\}_{k\geq 1}$ of $-\partial_{xx}$ is a basis of $L^2(0,\pi)$, writing $u_0(x)=\sum_{k\geq 1}a_k\sin(kx)$, the null-controllability is equivalent to the moment problem

$$k \int_0^T h(t)e^{-k^2(T-t)} dt = e^{-k^2T}a_k dx, \quad \forall k \ge 1,$$

or

$$k \int_0^T \tilde{h}(t)e^{-k^2t} dt = e^{-k^2T}a_k dx, \quad \forall k \ge 1.$$

Then, the problem is to find a family $\{q_k(t)\}_{k\geq 1}$ biorthogonal to $\{e^{-k^2t}\}_{k\geq 1}$, and such that for any $\varepsilon>0$:

$$||q_k||_{L^2(0,T)} \le C(\varepsilon,T)e^{\varepsilon k^2}, \quad \forall k \ge 1.$$

Then:

$$h(t) := \tilde{h}(T-t) = \sum_{k \ge 1} b_k q_k(T-t) \in L^2(0,T), \text{ with } b_k = \frac{e^{-k^2 T} a_k}{k}.$$

General result for the existence of biorthogonal families

Fattorini and Russell proved a general result on existence of a biorthogonal family to $\{e^{-\lambda_k t}\}_{k\geq 1}$ in $L^2(0,T)$ for a positive sequence $\Lambda=\{\lambda_k\}_{k\geq 1}$ such that satisfies:

$$\sum_{k\geq 1} \frac{1}{\lambda_k} < +\infty.$$

 $ightharpoonup |\lambda_k - \lambda_m| \ge
ho |k-m|, \quad \forall k,m \ge 1$ (Gap condition).

Of course, $\Lambda=\{k^2\}_{k\geq 1}$ fulfills these properties and the previous control satisfies

$$||h||_{L^2(0,T)} \le C(\varepsilon,T) \sum_{k\ge 1} \frac{|a_k|}{k} e^{-k^2(T-\varepsilon)}.$$

Extensions to systems

$$\begin{cases} y_t - (D\partial_{xx}^2 + A) = 0, & t \in (0, T), \ x \in (0, \pi), \\ u(t, 0) = Bv(t), \ u(t, L) = 0 & t \in (0, T), \\ u(0, x) = u_0(x), & x \in (0, \pi). \end{cases}$$

where $D = \operatorname{diag}(d_1, \dots, d_n)$, $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$.

Some results:

- Fernández-Cara et al. (2010). D = Id, n = 2, m = 1.
- ▶ Ammar-Khodja et al. (2011). Generalization $D = \operatorname{Id}, n \ge 2, m \ge 1$.

In these works, the eigenvalues of $D\partial_{xx}^2+A$ satisfy the gap condition, which allows to have controllability for any T>0.

Back to our system

$$\begin{cases} u_t + u_{xxxx} = v, & t > 0, \ x \in (0, \pi), \\ v_t - dv_{xx} = 0, & t > 0, \ x \in (0, \pi), \\ u(t, 0) = u_{xx}(t, 0) = 0, & t > 0, \\ u(t, \pi) = u_{xx}(t, \pi) = 0, & t > 0, \\ v(t, 0) = h(t), \ v(t, \pi) = 0, & t > 0. \end{cases}$$

- ▶ The eigenvalues are given by $\Lambda = \{k^4, dk^2\}_{k \ge 1}$.
- Ideas from [Ammar-Khodja, Benabdallah, González-Burgos, de Teresa, 2014].
- \blacktriangleright A first result: If \sqrt{d} is rational, the system is not approximate-controllable.
 - We can construct a solution of the adjoint system such that the unique continuation does not hold.

Condensation index and minimal time of controllability

- ▶ We assume that d is irrational. Therefore, the family $\Lambda=\{k^4,dk^2\}_{k\geq 1}$ has no repeated elements.
- ▶ In this case, there exists a biorthogonal family $\{q_k\}_{k\geq 1}$ to $\{e^{-\lambda_k t}\}_{k\geq 1}$.
- ▶ The gap condition may not be satisfied. However, it can be proved that

$$||q_k||_{L^2(0,T)} \le C(\varepsilon,T)e^{(c(\Lambda)+\varepsilon)\lambda_k}$$

where $c(\Lambda)$ is the *condensation index* of the sequence Λ . Roughly speaking, $c(\Lambda)$ is a measure of the way how λ_k approaches λ_m for $k \neq m$.

- \blacktriangleright Notice that $c(\Lambda)$ is the minimal time of null-controllability in the sense that:
 - ullet The system is null-controllable if $T>c(\Lambda)$.
 - ullet System is not null-controllable if $T < c(\Lambda)$.
- In particular, if Λ satisfies de gap condition: $c(\Lambda)=0$ and the system is controllable at any time T>0.

Characterization of the condensation index

From the two branches of $\Lambda=\{k^4,dk^2\}_{k\geq 1}$, we have $c(\Lambda)=\max\{c_1,c_2\}$, where

$$c_1 := \limsup_{k \to \infty} \frac{-\ln|\sin\left(\pi\sqrt{k}\sqrt[4]{d}\right)|}{dk^2}$$
 and $c_2 := \limsup_{k \to \infty} \frac{-\ln\left|\sin\left(\frac{\pi k^2}{\sqrt{d}}\right)\right|}{k^4}$

With this characterization of $c(\Lambda)$, we can prove that for any $T_0 \in [0, +\infty]$, there exists d irrational such that $T_0 = c(\Lambda)$.

Theorem (C., Cerpa, Mercado (2019))

There are d > 0 irrational such that the system:

- 1. is null-controllable in time T for any T > 0;
- 2. for a given $T_0 > 0$, is null-controllable in time T if $T > T_0$ and is not null-controllable if $T < T_0$; and
- 3. is not null-controllable.
- The previous result depends on how well d is approximated by rational numbers (technical lemmas coming from number theory),

Thank you