On the cost of null controllability of some partial differential equations

Nicolás Carreño Universidad Técnica Federico Santa María

ECOPT 2015 2da Escuela de Control y Optimización Universidad Técnica Federico Santa María 17 de Diciembre, 2015

00 0000		

Outline

Introduction

- I. On the uniform controllability of a linear KdV equation
- II. On the uniform controllability of a fourth order equation

Open problems

2/22

Introduction		
00 0000		

Outline

Introduction

I. On the uniform controllability of a linear KdV equation

II. On the uniform controllability of a fourth order equation

Open problems

3/22

Introduction		
• 0 0000		

Introduction

In this talk, we will discuss the cost of null controllability of two linear equations:

1. A KdV equation

$$\left\{ \begin{array}{ll} y_t + \varepsilon y_{xxx} - My_x = 0 & \text{ in } (0,T) \times (0,L), \\ y_{|x=0} = \textbf{\textit{v}}(\textbf{\textit{t}}), \quad y_{x|x=L} = 0, \quad y_{xx|x=L} = 0 & \text{ in } (0,T), \\ y_{|t=0} = y_0 & \text{ in } (0,L). \end{array} \right.$$

2. A fourth order equation

ł

$$\left\{ \begin{array}{ll} z_t + \varepsilon z_{xxxx} - M z_x = 0 & \text{ in } (0,T) \times (0,L), \\ z_{|x=0} = v_1(t), & z_{|x=L} = 0 & \text{ in } (0,T), \\ z_{xx|x=0} = v_2(t), & z_{xx|x=L} = 0 & \text{ in } (0,T), \\ z_{|t=0} = z_0, & \text{ in } (0,L). \end{array} \right.$$

We want to know how the size of the controls behaves with respect to $\varepsilon > 0$. In particular, as $\varepsilon \to 0^+$.

Introduction		
00 0000		

Introduction

The cost is measured as the best constant C_{cost}^{ε} such that

1. for all y_0 , there is v^{ε} such that $y_{|t=T} = 0$, and

 $\|\boldsymbol{v}^{\varepsilon}\| \leq C_{cost}^{\varepsilon} \|y_0\|.$

2. for all z_0 , there are v_1^{ε} and v_2^{ε} such that $z_{|t=T} = 0$, and

 $\|v_1^{\varepsilon}\| + \|v_2^{\varepsilon}\| \le C_{cost}^{\varepsilon}\|z_0\|.$

Question: What can be expected of C_{cost}^{ε} as $\varepsilon \to 0^+$?

Nicolás Carreño - Universidad Técnica Federico Santa María

イロト イポト イヨト イヨト 二日

Introduction		
00 ●000		

On the control of the transport equation

To understand what to expect of C_{cost}^{ε} as $\varepsilon \to 0^+$, consider the transport equation ($\varepsilon = 0$)

$$\begin{array}{ll} y_t - M y_x = 0 & \mbox{ in } (0,T) \times (0,L), \\ y_{|t=0} = y_0 & \mbox{ in } (0,L) \end{array}$$

with controls

$$\begin{aligned} y_{|x=0} &= v_1(t) & \text{if } M < 0, \\ y_{|x=L} &= v_2(t) & \text{if } M > 0. \end{aligned}$$

• The transport equation is controllable if and only if $T \ge L/|M|$.

Nicolás Carreño - Universidad Técnica Federico Santa María

On the cost of null controllability of some partial differential equations

・ロト ・四ト ・ヨト ・ヨト

Introduction		
00 0●00		

On the control of the transport equation

 $y_t - My_x = 0$ in $(0, T) \times (0, L)$

Nicolás Carreño - Universidad Técnica Federico Santa María

Introduction		
00 00●0	0000	

On the control of the transport equation

 $y_t - My_x = 0 \text{ in } (0,T) \times (0,L)$

Introduction		
00 000●		

Some results

• For the heat equation:

$$\left\{ \begin{array}{ll} y_t - \varepsilon y_{xx} - My_x = 0 & \mbox{in } (0,T) \times (0,L), \\ y_{|x=0} = \textbf{\textit{v}}(t), \quad y_{|x=L} = 0 & \mbox{in } (0,T), \end{array} \right.$$

Coron, Guerrero (2005) proved

- 1. T < L/|M|: $C_{cost}^{\varepsilon} \ge \exp(C\varepsilon^{-1})$ if $M \ne 0$. 2. $T \ge KL/|M|$: $C_{cost}^{\varepsilon} \le \exp(-C\varepsilon^{-1})$ if K > 0 large (uniform contr.).
- For the classic KdV equation:

$$\begin{cases} y_t + \varepsilon y_{xxx} - My_x = 0 & \text{in } (0,T) \times (0,L), \\ y_{|x=0} = v(t), \quad y_{|x=L} = 0, \quad y_{x|x=L} = 0 & \text{in } (0,T), \end{cases}$$

Glass, Guerrero (2009) proved

1.
$$T < L/|M|$$
: $C_{cost}^{\varepsilon} \ge \exp(C\varepsilon^{-1/2})$ if $M \ne 0$.
2. $T \ge KL/M$: $C_{cost}^{\varepsilon} \le \exp(-C\varepsilon^{-1/2})$ if $M > 0, K > 0$ large (u.c.).

	I. KdV equation	
00 0000		

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

э

10/22

Outline

Introduction

I. On the uniform controllability of a linear KdV equation

II. On the uniform controllability of a fourth order equation

Open problems

	I. KdV equation	
00 0000	0000	

A KdV equation in a bounded interval

▶ T > 0, $M \in \mathbb{R} \setminus \{0\}$ (transport coefficient), $\varepsilon > 0$ (dispersion coefficient).

$$\left\{ \begin{array}{ll} y_t + \varepsilon y_{xxx} - My_x = 0 & \qquad \mbox{in } (0,T) \times (0,L), \\ y_{|x=0} = {\color{black} v(t)}, \quad y_{x|x=L} = 0, \quad y_{xx|x=L} = 0 & \mbox{in } (0,T), \\ y_{|t=0} = y_0 & \qquad \mbox{in } (0,L). \end{array} \right.$$

- Controllability results by Guilleron (2014) and Cerpa, Rivas, Zhang (2013).
- ▶ Null controllability: For all $y_0 \in L^2(0, L)$, there is $v \in L^2(0, T)$ such that $\overline{y_{|t=T} = 0}$, and there is C > 0 such that

$$\|v\|_{L^2(0,T)} \le C \|y_0\|_{L^2(0,L)}.$$

▶ In particular, $C_{cost}^{\varepsilon} \leq C$.

Duality

 C_{cost}^{ε} is the best constant such that the observability inequality

$$\|\varphi_{|t=0}\|_{L^2(0,L)} \leq \varepsilon C_{cost}^{\varepsilon} \|\varphi_{xx|x=0}\|_{L^2(0,T)},$$

holds for every φ solution of the adjoint equation

$$\begin{cases} -\varphi_t - \varepsilon \varphi_{xxx} + M\varphi_x = 0 & \text{in } (0,T) \times (0,L), \\ \varphi_{|x=0} = 0, \quad \varphi_{x|x=0} = 0, \quad (\varepsilon \varphi_{xx} - M\varphi)_{|x=L} = 0 & \text{in } (0,T), \\ \varphi_{|t=T} = \varphi_T & \text{in } (0,L). \end{cases}$$

It is natural to focus in the analisys of the observability inequality.

 \bullet In general, for T>0 and $\varepsilon>0,$ it can be proved (by Carleman inequalities) that

$$C_{cost}^{\varepsilon} \le \exp\left(CT^{-1}\varepsilon^{-1}\right).$$

Nicolás Carreño - Universidad Técnica Federico Santa María

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

	I. KdV equation	
00 0000	0000	

Is it possible to obtain uniform controllability with respect to $\varepsilon \to 0^+$?

• $C_{cost}^{\varepsilon} \leq C_{\varepsilon} \exp(-C(T, M)\varepsilon^{-1/2})$, T large enough?

A possible strategy is to combine an observability inequality:

$$\|\varphi_{|t=T/2}\|_{L^2(0,L)} \le C_{\varepsilon} \exp\left(CT^{-1/2}\varepsilon^{-1/2}\right) \|\varphi_{xx|x=0}\|_{L^2(0,T)}$$

with an exponential dissipation (M > 0 (negative transport), T large):

$$\|\varphi_{|t=0}\|_{L^{2}(0,L)} \leq C_{\varepsilon} \exp\left(-CT\varepsilon^{-1/2}\right) \|\varphi_{|t=T/2}\|_{L^{2}(0,L)}.$$

ヘロト 人間 ト 人 ヨト 人 ヨトー

13/22

- Observability OK. Improvement from $\exp(C\varepsilon^{-1})^{\text{Guilleron(2014)}}$ to $\exp(C\varepsilon^{-1/2})$.
- Dissipation is not possible.

	I. KdV equation	
00 0000	0000	

Is it possible to obtain uniform controllability with respect to $\varepsilon \to 0^+$?

- $C_{cost}^{\varepsilon} \leq C_{\varepsilon} \exp(-C(T, M)\varepsilon^{-1/2})$, T large enough?
- A possible strategy is to combine an observability inequality:

$$\|\varphi_{|t=T/2}\|_{L^{2}(0,L)} \leq C_{\varepsilon} \exp\left(CT^{-1/2}\varepsilon^{-1/2}\right) \|\varphi_{xx|x=0}\|_{L^{2}(0,T)}$$

with an exponential dissipation (M > 0 (negative transport), T large):

$$\|\varphi_{|t=0}\|_{L^{2}(0,L)} \leq C_{\varepsilon} \exp\left(-CT\varepsilon^{-1/2}\right) \|\varphi_{|t=T/2}\|_{L^{2}(0,L)}.$$

- Observability OK. Improvement from $\exp(C\varepsilon^{-1})^{\text{Guilleron(2014)}}$ to $\exp(C\varepsilon^{-1/2})$.
- Dissipation is not possible.

	I. KdV equation	
00 0000	0000	

Is it possible to obtain uniform controllability with respect to $\varepsilon \to 0^+$?

- $C_{cost}^{\varepsilon} \leq C_{\varepsilon} \exp(-C(T, M)\varepsilon^{-1/2})$, T large enough?
- A possible strategy is to combine an observability inequality:

$$\|\varphi_{|t=T/2}\|_{L^{2}(0,L)} \leq C_{\varepsilon} \exp\left(CT^{-1/2}\varepsilon^{-1/2}\right) \|\varphi_{xx|x=0}\|_{L^{2}(0,T)}$$

with an exponential dissipation (M > 0 (negative transport), T large):

$$\|\varphi_{|t=0}\|_{L^{2}(0,L)} \leq C_{\varepsilon} \exp\left(-CT\varepsilon^{-1/2}\right) \|\varphi_{|t=T/2}\|_{L^{2}(0,L)}.$$

(□) (@) (E) (E) [

- Observability OK. Improvement from $\exp(C\varepsilon^{-1})^{\text{Guilleron(2014)}}$ to $\exp(C\varepsilon^{-1/2})$.
- Dissipation is not possible.

	I. KdV equation	
00 0000	0000	

Explosion result for arbitrary \boldsymbol{T}

Theorem¹. Let T, L, M > 0. Then, there is $\varepsilon_0 > 0$ such that

$$C_{cost}^{\varepsilon} \ge C_{\varepsilon} \exp(CLM^{1/2}\varepsilon^{-1/2}), \quad \forall \varepsilon \in (0, \varepsilon_0)$$

where C_{ε} depends polynomially on ε^{-1} and ε .

 \blacktriangleright There exists $y_0 \in L^2(0,L)$ such that every control $\pmb{v} \in L^2(0,T)$ such that $y_{|t=T}=0$ satisfy

 $\|\boldsymbol{v}\|_{L^{2}(0,T)} \geq C_{\varepsilon} \exp\left(CLM^{1/2}\varepsilon^{-1/2}\right) \|\boldsymbol{y}_{0}\|_{L^{2}(0,L)}, \quad \forall \varepsilon \in (0,\varepsilon_{0}).$

14/22

Nicolás Carreño - Universidad Técnica Federico Santa María

	II. Fourth order equation	
00 0000		

イロン イヨン イヨン イヨン

э

15/22

Outline

Introduction

I. On the uniform controllability of a linear KdV equation

II. On the uniform controllability of a fourth order equation

Open problems

	II. Fourth order equation	
00 0000	000	

A linear fourth order equation

▶ T > 0, $M \in \mathbb{R} \setminus \{0\}$ (transport coefficient), $\varepsilon > 0$ (diffusion coeficient).

$$\left\{ \begin{array}{ll} z_t + \varepsilon z_{xxxx} - M z_x = 0 & \text{ in } (0,T) \times (0,L), \\ z_{|x=0} = v_1(t), & z_{|x=L} = 0 & \text{ in } (0,T), \\ z_{xx|x=0} = v_2(t), & z_{xx|x=L} = 0 & \text{ in } (0,T), \\ z_{|t=0} = z_0, & \text{ in } (0,L). \end{array} \right.$$

- Controllability results by Cerpa, Mercado, Guzmán.
- ▶ Null controllability: For all $z_0 \in L^2(0, L)$, there are $v_1 \in L^2(0, T)$ and $v_2 \in L^2(0, T)$ such that $z_{|t=T} = 0$, and there is C > 0 such that

$$\|\boldsymbol{v}_1\|_{L^2(0,T)} + \|\boldsymbol{v}_2\|_{L^2(0,T)} \le C \|\boldsymbol{y}_0\|_{L^2(0,L)}.$$

▶ In particular,
$$C_{cost}^{\varepsilon} \leq C$$
.

Nicolás Carreño - Universidad Técnica Federico Santa María

(□) (@) (E) (E) [

Introduction 00 0000	II. Fourth order equation ○●○	

Duality

Adjoint equation:

$$\left\{ \begin{array}{ll} -\varphi_t + \varepsilon \varphi_{xxxx} + M \varphi_x = 0 & \mbox{ in } (0,T) \times (0,L), \\ \varphi_{|x=0} = 0, & \varphi_{|x=L} = 0 & \mbox{ in } (0,T), \\ \varphi_{xx|x=0} = 0, & \varphi_{xx|x=L} = 0 & \mbox{ in } (0,T), \\ \varphi_{|t=T} = \varphi_T, & \mbox{ in } (0,L). \end{array} \right.$$

Observability:

 $\|\varphi_{|t=T/2}\|_{L^{2}(0,L)} \leq C_{\varepsilon} \exp\left(CT^{-1/3}\varepsilon^{-1/3}\right) \left(\|\varphi_{x|x=0}\|_{L^{2}(0,T)} + \|\varphi_{xxx|x=0}\|_{L^{2}(0,T)}\right)$

イロン イロン イヨン イヨン 三日

17/22

Exponencial dissipation(T large):

$$\|\varphi_{|t=0}\|_{L^{2}(0,L)} \leq C_{\varepsilon} \exp\left(-CT\varepsilon^{-1/3}\right) \|\varphi_{|t=T/2}\|_{L^{2}(0,L)}.$$

• Observability: Improvement from $\exp(C\varepsilon^{-1})$ to $\exp(C\varepsilon^{-1/3})$.

	II. Fourth order equation	
00 0000	000	

Uniform controllability uniform and explosion results²

Theorem (*Uniform controllability***)**. Let L > 0, $M \neq 0$ and $T \ge 40L/|M|$. Then, for all $z_0 \in L^2(0, L)$, there are $v_1, v_2 \in L^2(0, T)$ such that $z_{|t=T} = 0$ and

$$\|v_1\|_{L^2(0,T)} + \|v_2\|_{L^2(0,T)} \le C_{\varepsilon} \exp\left(-C\varepsilon^{-1/3}\right) \|z_0\|_{L^2(0,L)}$$

In particular: $\lim_{\varepsilon \to 0^+} C_{cost}^{\varepsilon} = 0.$

Theorem (*Explosion*). Let L > 0, $M \neq 0$ and T < L/|M|. Then, there is $z_0 \in L^2(0, L)$ and $\varepsilon_0 > 0$ such that every pair of controls $v_1, v_2 \in L^2(0, T)$ such that $z_{|t=T} = 0$ satisfy

$$\|v_1\|_{L^2(0,T)} + \|v_2\|_{L^2(0,T)} \ge C_{\varepsilon} \exp\left(C\varepsilon^{1/3}\right)\|z_0\|_{L^2(0,L)}, \quad \forall \varepsilon \in (0,\varepsilon_0)$$

In particular: $\lim_{\varepsilon \to 0^+} C_{cost}^{\varepsilon} = +\infty$.

²C., Guzmán. On the cost of null controllability of a linear fourth order parabolic equation. Submitted. $\Box \rightarrow \langle \overline{\ominus} \rangle \rightarrow \langle \overline{\equiv} \rangle \rightarrow \langle \overline{\equiv} \rangle$

18/22

Nicolás Carreño - Universidad Técnica Federico Santa María

		Open problems
00 0000		

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

э

19/22

Outline

Introduction

I. On the uniform controllability of a linear KdV equation

II. On the uniform controllability of a fourth order equation

Open problems

		Open problems
00 0000		000

Open problems

Two controls in KdV

$$\begin{cases} y_t + \varepsilon y_{xxx} - My_x = 0 & \text{in } (0,T) \times (0,L), \\ y_{|x=0} = v_0(t), \quad y_{x|x=L} = v_1(t), \quad y_{xx|x=L} = v_2(t) & \text{in } (0,T), \\ y_{|t=0} = y_0, \quad y_{|t=T} = 0 & \text{in } (0,L). \end{cases}$$

What happens in these cases?

1. $v_0(t) = 0$: Partially solved (restrictions on y_0). 2. $v_1(t) = 0$: Partially solved (restrictions on y_0)³. 3. $v_2(t) = 0$: Open.

³C., Guerrero. Uniform null controllability of a linear KdV equation using two controls. *Preprint*. 20/22

Nicolás Carreño - Universidad Técnica Federico Santa María

Introduction 00 0000		Open problems ⊙●○

Open problems

- M > 0 (negative transport) and T > 0 small.
 - For the heat equation

$$\begin{cases} y_t - \varepsilon y_{xx} - My_x = 0 & \text{in } (0,T) \times (0,L), \\ y_{|x=0} = \mathbf{v}(t), \quad y_{|x=L} = 0 & \text{in } (0,T), \end{cases}$$

it has been proved that $\lim_{\varepsilon \to 0^+} C_{cost}^{\varepsilon} = +\infty$, if $T < 2\sqrt{2}L/M$.

For the fourth order equation

$$\left\{ \begin{array}{ll} z_t + \varepsilon z_{xxxx} - M z_x = 0 & \text{ in } (0,T) \times (0,L), \\ z_{|x=0} = v_1(t), & z_{|x=L} = 0 & \text{ in } (0,T), \\ z_{xx|x=0} = v_2(t), & z_{xx|x=L} = 0 & \text{ in } (0,T). \end{array} \right.$$

Is there $K \in (1, 40)$ such that if T < KL/M, then $\lim_{\varepsilon \to 0^+} C_{cost}^{\varepsilon} = +\infty$?

Nicolás Carreño - Universidad Técnica Federico Santa María

イロン イロン イヨン イヨン 三日

00

Thank you

Nicolás Carreño - Universidad Técnica Federico Santa María

On the cost of null controllability of some partial differential equations

22/22