Control of parabolic systems and some applications to the control of fluids

Nicolás Carreño

Departamento de Matemática Universidad Técnica Federico Santa María

III Congresso Brasileiro de Jovens Pesquisadores em Matemática Pura, Aplicada e Estatística Recent trends in nonlinear PDEs

December 13th, 2018

Outline

Introduction
Observability and Carleman estimates
Systems

Control of fluids

Outline

Introduction
Observability and Carleman estimates
Systems

Control of fluids

Observability and Carleman estimates

PDE control

Example: Heat equation

Consider a regular open $\Omega \subset \mathbb{R}^N$ and $\omega \subset \Omega$ (control domain)

$$\left\{ \begin{array}{ll} y_t - \Delta y = \mathbf{v} \mathbb{1}_\omega & (x,t) \in \Omega \times (0,T), \\ y = 0 & x \in \partial \Omega, \\ y(0) = y_0 & x \in \Omega. \end{array} \right.$$

- y = y(x,t): Temperature distribution.
- $\mathbf{v} = \mathbf{v}(\mathbf{x}, t)$: Control supported in ω .

Question: Given T > 0 and $y_1 = y_1(x)$, is there v such that $y(T) = y_1$?

PDE control

Answer: In general, the answer is no due to the *regularizing effect*.

It seems natural to consider the notion of control to the trajectories:
 Consider a solution of

$$\begin{cases} \bar{y}_t - \Delta \bar{y} = 0 & (x, t) \in \Omega \times (0, T), \\ \bar{y} = 0 & x \in \partial \Omega, \\ \bar{y}(0) = \bar{y}_0 & x \in \Omega, \end{cases}$$

We look for a control v such that $y(T) = \bar{y}(T)$.

• By linearity (taking $\widetilde{y} := y - \overline{y}$), this is equivalent to the null-controllability:

$$y(T) = 0.$$

Therefore, we concentrate in this case.

Duality Method: Hilbert Uniqueness Method (HUM)

Construction of the control:

• We multiply $y_t - \Delta y = v \mathbb{1}_{\omega}$ by φ solution to the (adjoint) equation

$$\begin{cases} -\varphi_t - \Delta \varphi = 0 & (x,t) \in \Omega \times (0,T), \\ \varphi = 0 & x \in \partial \Omega, \\ \varphi(T) = \varphi_T \in L^2(\Omega) & x \in \Omega, \end{cases}$$

and integrate in $\Omega \times (0,T)$:

$$\int_{\Omega} y(T)\varphi_T \, \mathrm{d}x = \iint_{\omega \times (0,T)} v\varphi \, \mathrm{d}x \, \mathrm{d}t + \int_{\Omega} y_0 \varphi(0) \, \mathrm{d}x, \quad \forall \varphi_T \in L^2(\Omega).$$

ullet v is a control such that y(T)=0 if and only if

$$\iint_{\omega \times (0,T)} \mathbf{v} \varphi \, \mathrm{d}x \, \mathrm{d}t + \int_{\Omega} y_0 \varphi(0) \, \mathrm{d}x = 0, \quad \forall \varphi_T \in L^2(\Omega).$$

Observability inequality

The previous condition can be seen as an optimality condition for

$$J(\varphi_T) = \frac{1}{2} \iint_{\omega \times (0,T)} |\varphi|^2 dx dt + \int_{\Omega} y_0 \varphi(0) dx.$$

ullet J convex, continuous and coercive if there exists C>0 such that

$$\int_{\Omega} |\varphi(0)|^2 dx \le C \iint_{\omega \times (0,T)} |\varphi|^2 dx dt.$$

This is known as observability inequality.

The control is given by

$$\mathbf{v} := \widehat{\varphi},$$

where $\widehat{\varphi}$ is the solution of the adjoint equation associated to $\widehat{\varphi}_T$, minimum of J.

• Null-controllability is equivalent to observability.

Carleman estimates

How to prove the observability inequality?

Powerful tool to prove observability: Carleman estimates

$$\cdots + \iint_{\Omega \times (0,T)} \rho |\varphi|^2 dx dt \le C \iint_{\Omega \times (0,T)} \rho |\varphi_t + \Delta \varphi|^2 dx dt + C \iint_{\omega_0 \times (0,T)} \rho |\varphi|^2 dx dt$$

- $ightharpoonup \varphi(x,t)=0, x\in\partial\Omega.$
- $\rho = \rho(x,t)$ is a positive function and continuous in $\overline{\Omega} \times (0,T)$ with critical points only in $\omega_0 \subset \omega$.
- ▶ To deduce the observability, we use dissipation properties as

$$\int_{\Omega} |\varphi(0)|^2 dx \le \int_{\Omega} |\varphi(t)|^2 dx, \quad t \in (0, T).$$

Control of a system of two equations with one control

Consider the system with one scalar control

$$\begin{cases} y_t - \Delta y = z + \mathbf{v} \mathbb{1}_{\omega} & (x,t) \in \Omega \times (0,T), \\ z_t - \Delta z = y \mathbb{1}_{\mathcal{O}} & (x,t) \in \Omega \times (0,T), \\ y = z = 0 & x \in \partial \Omega, \\ y(0) = y^0, \quad z(0) = z^0 & x \in \Omega. \end{cases}$$

- We look for v such that y(T) = z(T) = 0.
- ullet Observability inequality: There exists C>0 such that

$$\int_{\Omega} (|\varphi(0)|^2 + |\psi(0)|^2) dx \le C \iint_{\omega \times (0,T)} |\varphi|^2 dx dt$$

where (φ, ψ) is the solution to the adjoint system

$$\begin{cases} -\varphi_t - \Delta \varphi = \psi \mathbb{1}_{\mathcal{O}} & (x,t) \in \Omega \times (0,T), \\ -\psi_t - \Delta \psi = \varphi & (x,t) \in \Omega \times (0,T), \\ \varphi = \psi = 0 & x \in \partial \Omega, \\ \varphi(T) = \varphi_T, \quad \psi(T) = \psi_T & x \in \Omega. \end{cases}$$

Control of a system of two equations with one control

ullet The idea is to combine Carleman estimates for arphi and ψ :

$$\iint_{\Omega \times (0,T)} \rho_{1} |\varphi|^{2} dx dt \leq C \iint_{\Omega \times (0,T)} \rho_{2} |\psi|^{2} dx dt + C \iint_{\omega_{0} \times (0,T)} \rho_{1} |\varphi|^{2} dx dt$$

$$\iint_{\Omega \times (0,T)} \rho_{1} |\psi|^{2} dx dt \leq C \iint_{\Omega \times (0,T)} \rho_{2} |\varphi|^{2} dx dt + C \iint_{\omega_{0} \times (0,T)} \rho_{1} |\psi|^{2} dx dt$$

- Estimate the local term of ψ : $\psi = -\varphi_t \Delta \varphi$ in \mathcal{O} .
- We assume $\omega \cap \mathcal{O} \neq \emptyset$ and choose $\omega_0 \subset \Omega \cap \mathcal{O}$.

$$\iint_{\omega_0 \times (0,T)} \rho_1 |\psi|^2 dx dt = \iint_{\omega_0 \times (0,T)} \rho_1 \psi(-\varphi_t - \Delta \varphi) dx dt$$

$$\leq \frac{1}{2C} \iint_{\omega_0 \times (0,T)} \rho_1 |\psi|^2 dx dt + C \iint_{\omega_0 \times (0,T)} \rho_1 |\varphi|^2 dx dt.$$

Outline

Introduction
Observability and Carleman

Observability and Carleman estimates Systems

Control of fluids

Some systems from fluid mechanics (N=2 or 3)

Navier-Stokes system (N scalar controls)

$$\begin{cases} y_t - \Delta y + (y \cdot \nabla)y + \nabla p = \mathbf{v} \mathbb{1}_{\omega}, & \nabla \cdot y = 0 \\ y = 0 & x \in \partial \Omega. \end{cases} (x, t) \in \Omega \times (0, T),$$

- ▶ $y = y(x,t) \in \mathbb{R}^N$: Velocity field of the fluid.
- $\mathbf{v} \in \mathbb{R}^N$ is the control.
- Boussinesq system (N+1 scalar controls)

$$\begin{cases} y_t - \Delta y + (y \cdot \nabla)y + \nabla p &= \mathbf{v} \mathbb{1}_{\omega} + \theta e_N, & \nabla \cdot y = 0 & (x, t) \in \Omega \times (0, T), \\ \theta_t - \Delta \theta + y \cdot \nabla \theta &= \mathbf{v}_0 \mathbb{1}_{\omega} & (x, t) \in \Omega \times (0, T), \\ y = 0, & \theta = 0 & x \in \partial \Omega. \end{cases}$$

- $\theta = \theta(x, t) \in \mathbb{R}$: Temperature of the fluid.
- ▶ $v_0 \in \mathbb{R}$: Control acting on the temperature.

Question: Is it possible to control these systems with less scalar controls?

Null controllability of the Navier-Stokes system

$$\left\{ \begin{array}{ll} y_t - \Delta y + (y \cdot \nabla)y + \nabla p = \mathbf{v} \mathbb{1}_{\omega}, & \nabla \cdot y = 0 & (x,t) \in \Omega \times (0,T), \\ y = 0 & x \in \partial \Omega \\ y(0) = y^0 & x \in \Omega. \end{array} \right.$$

- $i_0 \in \{1, \dots, N\}$, T > 0 y $\omega \subset \Omega$.
- ▶ C. Guerrero $(2012)^1$: There is a $\delta > 0$ such that if $||y^0|| \le \delta$, then there is a control v, with $v_{i_0} \equiv 0$, and an associated solution (y, p) such that

$$y(T) = 0.$$

Idea:

- Control of the linearized system around zero: $y_t \Delta y + \nabla p = v \mathbb{1}_{\omega}$.
- Go back to the non-linear system using a local inversion argument.

 $^{^1}$ C., Guerrero. Local null controllability of the N-dimensional Navier-Stokes system with N-1 scalar controls in an arbitrary control domaine. *J. Math. Fluid Mech*, 2013 $_{\odot}$ $_{\odot}$ $_{\odot}$ $_{\odot}$ $_{\odot}$ $_{\odot}$

Navier-Stokes system. Case N=2.

• $y = (y_1, y_2), v = (v_1, 0).$

$$\begin{cases} y_t - \Delta y + (y \cdot \nabla)y + \nabla p = (v_1, 0) \mathbb{1}_{\omega}, & \nabla \cdot y = 0 \\ y = 0 & x \in \partial \Omega. \end{cases}$$

Linearization around zero:

$$\begin{cases} y_t - \Delta y + \nabla p = (v_1, 0) \mathbb{1}_{\omega}, & \nabla \cdot y = 0 & (x, t) \in \Omega \times (0, T), \\ y = 0 & x \in \partial \Omega. \end{cases}$$

Observability inequality:

$$\int_{\Omega} (|\varphi_1(0)|^2 + |\varphi_2(0)|^2) dx \le C \int_{\omega \times (0,T)} |\varphi_1|^2 dx dt$$

where $\varphi = (\varphi_1, \varphi_2)$ is the solution to the adjoint system

$$\begin{cases} -\varphi_t - \Delta \varphi + \nabla \pi = 0, & \nabla \cdot \varphi = 0 & (x, t) \in \Omega \times (0, T), \\ \varphi = 0 & x \in \partial \Omega. \end{cases}$$

Navier-Stokes system. Case N=2.

- ▶ No coupling between φ_1 and φ_2 ? Yes: $\partial_1 \varphi_1 + \partial_2 \varphi_2 = 0$.
- ▶ Carleman estimate for φ_1 . Since $\Delta \pi = 0$, we have

$$-(\Delta\varphi_1)_t - \Delta(\Delta\varphi_1) = 0,$$

but no boundary condition for $\Delta \varphi_1$.

Carleman estimate with non-homogenous boundary conditions:

$$\cdots + \iint_{\Omega \times (0,T)} \rho_1 |\Delta \varphi_1|^2 dx dt \le C \iint_{\omega_0 \times (0,T)} \rho_1 |\Delta \varphi_1|^2 dx dt + b.t.$$

▶ Recover φ_2 from $\varphi|_{\partial\Omega}=0$ and $\partial_1\varphi_1+\partial_2\varphi_2=0$.

Boussinesq system

$$\begin{cases} y_t - \Delta y + (y \cdot \nabla)y + \nabla p &=& \mathbf{v} \mathbb{1}_{\omega} + \theta \, e_N, \quad \nabla \cdot y = 0 & (x,t) \in \Omega \times (0,T), \\ \theta_t - \Delta \theta + y \cdot \nabla \theta &=& \mathbf{v}_0 \mathbb{1}_{\omega} & (x,t) \in \Omega \times (0,T), \\ y = 0, \quad \theta = 0 & x \in \partial \Omega \\ y(0) = y^0, \quad \theta(0) = \theta^0 & x \in \Omega. \end{cases}$$

- $i_0 \in \{1, \ldots, N-1\}$, T > 0 y $\omega \subset \Omega$.
- ▶ C. $(2012)^2$: There is a $\delta > 0$ such that if $\|(y^0, \theta^0)\| \le \delta$, there are controls v_0 and v, with $v_{i_0} \equiv v_N \equiv 0$, and an associated solution (y, p, θ) such that

$$y(T) = 0 \text{ y } \theta(T) = 0.$$

Boussinesq system. Case N=2.

• $y=(y_1,y_2), \theta \in \mathbb{R}, v_0 \in \mathbb{R}.$

$$\begin{cases} y_t - \Delta y + (y \cdot \nabla)y + \nabla p &= (0, \theta), \quad \nabla \cdot y = 0 \\ \theta_t - \Delta \theta + y \cdot \nabla \theta &= v_0 \mathbb{1}_{\omega} \end{cases} (x, t) \in \Omega \times (0, T),$$

Linearization around zero:

$$\begin{cases} y_t - \Delta y + \nabla p &= (0, \theta), \quad \nabla \cdot y = 0 & (x, t) \in \Omega \times (0, T), \\ \theta_t - \Delta \theta &= v_0 \mathbb{1}_{\omega} & (x, t) \in \Omega \times (0, T). \end{cases}$$

Observability inequality:

$$\int_{\Omega} (|\varphi_1(0)|^2 + |\varphi_2(0)|^2 + |\theta(0)|^2) dx \le C \int_{\omega \times (0,T)} |\theta|^2 dx dt$$

where $(\varphi, \theta) = (\varphi_1, \varphi_2, \theta)$ is the solution to the adjoint system

$$\begin{cases} -\varphi_t - \Delta \varphi + \nabla \pi = 0, & \nabla \cdot \varphi = 0 & (x, t) \in \Omega \times (0, T), \\ -\theta_t - \Delta \theta = \varphi_2 & (x, t) \in \Omega \times (0, T). \end{cases}$$

Boussinesq system. Case N=2.

- We combine the previous ideas.
- ▶ Carleman for φ_2 and θ :

$$\cdots + \iint_{\Omega \times (0,T)} \rho_{1} |\Delta \varphi_{2}|^{2} dx dt \leq C \iint_{\omega_{0} \times (0,T)} \rho_{1} |\Delta \varphi_{2}|^{2} dx dt + b.t.$$
$$\cdots + \iint_{\Omega \times (0,T)} \rho_{1} |\theta|^{2} dx dt \leq C \iint_{\omega_{0} \times (0,T)} \rho_{1} |\theta|^{2} dx dt$$

- ▶ Recover φ_1 from $\varphi|_{\partial\Omega} = 0$ and $\partial_1\varphi_1 + \partial_2\varphi_2 = 0$.
- Use the equation $\varphi_2 = -\theta_t \Delta\theta$.

Some comments

This method has its limitations:

- Seems difficult to consider a control like $v = (v_1, 0, 0)$. [Coron, Lissy, 2014]: Return method.
- Controllability to trajectories for Navier-Stokes: Adjoint equation:

$$-\varphi_t - \Delta \varphi + \bar{y} \cdot (\nabla \varphi + \nabla^t \varphi) + \nabla \pi = 0.$$

Problem: The components of φ are mixed.

 Boundary controllability with one vanishing component (taking the trace of an extended controlled solution does not work). Thank you