On the cost of null controllability of a linear KdV equation Workshop on Control Systems and Identification Problems Universidad Técnica Federico Santa María

Nicolás Carreño Godoy Joint work with Sergio Guerrero

January 15, 2015

Outline

An estimation of the cost of null controllability

Behaviour of the cost in the vanishing dispersion limit

A uniform null controllability result

Perspectives

A linear KdV equation on a bounded domain

▶ T > 0, $M \in \mathbb{R} \setminus \{0\}$ (transport coefficient), $\varepsilon > 0$ (dispersion coefficient), $Q := (0, T) \times (0, L).$

$$\left\{ \begin{array}{ll} y_t + \varepsilon y_{xxx} - M y_x = 0 & \text{in } Q, \\ y_{|x=0} = {\color{red} v(t)}, & y_{x|x=L} = 0, & y_{xx|x=L} = 0 & \text{in } (0,T), \\ y_{|t=0} = y_0 & \text{in } (0,L). \end{array} \right.$$

- ▶ This kind of boundary conditions have been introduced by Colin and Ghidaglia (1997,2001).
- Null controllability for every T > 0 was proved by Guilleron (2014).
- We are interested in the behaviour of the cost of null controllability with respect to ε .

$$C_{cost}^{\varepsilon} := \sup_{y_0 \in L^2(0,L)} \Big\{ \min_{v \in L^2(0,T)} \frac{\|v\|_{L^2(0,T)}}{\|y_0\|_{L^2(0,L)}} : y_{|t=0} = y_0, y_{|t=T} = 0 \text{ in } (0,L) \Big\}.$$

Cost of null controllability

000

Examples

0000

Cost of null controllability

Heat equation:

$$\begin{cases} y_t - \varepsilon y_{xx} - M y_x = 0 & \text{in } Q, \\ y_{|x=0} = \mathbf{v(t)}, & y_{|x=L} = 0 & \text{in } (0, T). \end{cases}$$

Coron, Guerrero (2005): $C_{cost}^{\varepsilon,heat} \leq C_0 \exp\left(C(T,M)\varepsilon^{-1}\right)$.

(Classic) KdV equation:

$$\left\{ \begin{array}{ll} y_t + \varepsilon y_{xxx} - My_x = 0 & \text{in } Q, \\ y_{|x=0} = \textcolor{red}{v(t)}, & y_{|x=L} = 0, & y_{x|x=L} = 0 & \text{in } (0,T). \end{array} \right.$$

Glass, Guerrero (2009): $C_{cost}^{\varepsilon, KdV} \leq C_0 \exp\left(C(T, M)\varepsilon^{-1/2}\right)$.

▶ (Our) KdV equation:

$$\begin{cases} y_t + \varepsilon y_{xxx} - My_x = 0 & \text{in } Q, \\ y_{|x=0} = \frac{v(t)}{t}, & y_{x|x=L} = 0, & y_{xx|x=L} = 0 & \text{in } (0,T). \end{cases}$$

Guilleron (2014): $C_{cost}^{\varepsilon} \leq C_0 \exp\left(C(T, M) \varepsilon^{-1}\right)$.

An estimate of the cost of null controllability

Theorem (Guerrero, C., 2014)

Let T>0. $M\in\mathbb{R}$ and $\varepsilon>0$ be fixed. Then.

$$C_{cost}^{\varepsilon} \le C_0 \exp\left(C(\varepsilon^{-1/2}T^{-1/2} + M^{1/2}\varepsilon^{-1/2} + MT)\right), \quad \text{if } M > 0, \text{ and}$$

$$C_{cost}^{\varepsilon} \le C_0 \exp\left(C(\varepsilon^{-1/2}T^{-1/2} + |M|^{1/2}\varepsilon^{-1/2})\right), \quad \text{if } M < 0,$$

where C>0 is a constant independent of T, M and ε , and $C_0>0$ depends polynomially on ε^{-1} , T^{-1} and $|M|^{-1}$.

▶ In particular, if ε is small enough

$$C_{cost}^{\varepsilon} \le C_0 \exp\left(C(T, M)\varepsilon^{-1/2}\right).$$

Cost of null controllability

0000

The Hilbert Uniqueness Method (HUM)

▶ The proof is based on an observability inequality

$$\|\varphi_{|t=0}\|_{L^2(0,L)} \le C_{obs} \|\varphi_{xx|x=0}\|_{L^2(0,T)},$$

where φ satisfies (adjoint equation)

$$\begin{cases} -\varphi_t - \varepsilon \varphi_{xxx} + M\varphi_x = 0 & \text{in } Q, \\ \varphi_{|x=0} = 0, \quad \varphi_{x|x=0} = 0, \quad (\varepsilon \varphi_{xx} - M\varphi)_{|x=L} = 0 & \text{in } (0,T). \end{cases}$$

• We consider the function $\phi := \varepsilon \varphi_{xx} - M\varphi$, which solves

$$\left\{ \begin{array}{ll} -\phi_t - \varepsilon \phi_{xxx} + M\phi_x = 0 & \text{in } Q, \\ \phi_{x|x=0} = 0, \quad \phi_{xx|x=0} = 0, \quad \color{red} \phi_{|x=L} = \color{red} 0 & \text{in } (0,T) \end{array} \right.$$

and we prove (Carleman estimate)

$$\iint_{Q} e^{-2s\alpha} \alpha^{5} |\phi|^{2} \le C_{0} \int_{0}^{T} e^{-2s\alpha} \alpha^{5} |\phi|_{x=0}|^{2}, \quad \alpha = \frac{p(x)}{t^{1/2} (T-t)^{1/2}}.$$

• We recover φ from ϕ and $\varphi_{|x=0} = \varphi_{x|x=0} = 0$ (O.D.E.).

Behaviour of the cost in the vanishing dispersion limit

- We are now interested in the behaviour of C_{cost}^{ε} as $\varepsilon \to 0^+$.
- ▶ Consider the transport equation ($\varepsilon = 0$)

$$\begin{aligned} y_t - M y_x &= 0 & & \text{in } Q := (0,T) \times (0,L), \\ y_{|t=0} &= y_0 & & \text{in } (0,L) \end{aligned}$$

with controls:

$$y_{|x=0} = v_1(t)$$
 if $M < 0$,
 $y_{|x=L} = v_2(t)$ if $M > 0$.

- ▶ The transport equation is controllable if only if T > L/|M|.

Behaviour of the cost in the vanishing dispersion limit

- We are now interested in the behaviour of C_{cost}^{ε} as $\varepsilon \to 0^+$.
- ▶ Consider the transport equation $(\varepsilon = 0)$

$$\begin{aligned} y_t - M y_x &= 0 & & \text{in } Q := (0,T) \times (0,L), \\ y_{|t=0} &= y_0 & & \text{in } (0,L) \end{aligned}$$

with controls:

$$y_{|x=0} = v_1(t)$$
 if $M < 0$,
 $y_{|x=L} = v_2(t)$ if $M > 0$.

- ▶ The transport equation is controllable if only if $T \ge L/|M|$.
- Then, it is natural to expect for KdV:
- $\bigsqcup_{\varepsilon \to 0^+} C^\varepsilon_{cost} = +\infty \text{ if } T < L/|M|.$

An explosion result of the cost

For the classic KdV equation:

$$\left\{ \begin{array}{ll} y_t + \varepsilon y_{xxx} - M y_x = 0 & \text{in } Q, \\ y_{|x=0} = {\color{red} v(t)}, & y_{|x=L} = 0, & y_{x|x=L} = 0 & \text{in } (0,T), \\ y_{|t=0} = y_0 & \text{in } (0,L) \end{array} \right.$$

Glass, Guerrero (2009) proved that

- 1. $T < L/|M| : C_{cost}^{\varepsilon, KdV} > \exp(C\varepsilon^{-1/2})$ if $M \neq 0$.
- 2. T > KL/M: $C_{cost}^{\varepsilon, KdV} < \exp(-C\varepsilon^{-1/2})$ if M > 0, K > 0 large.
- ▶ The idea is to reproduce these results for the boundary conditions

$$y_{|x=0} = v(t), \quad y_{x|x=L} = 0, \quad y_{xx|x=L} = 0.$$

An explosion result of the cost (M < 0)

$$\left\{ \begin{array}{ll} y_t + \varepsilon y_{xxx} - M y_x = 0 & \text{in } Q, \\ y_{|x=0} = {\color{red} v(t)}, & y_{x|x=L} = 0, & y_{xx|x=L} = 0 & \text{in } (0,T), \\ y_{|t=0} = y_0 & \text{in } (0,L). \end{array} \right.$$

Theorem

Let M < 0. Then, for every T < L/|M| there exist C > 0 (independent of ε) and $\varepsilon_0 > 0$ such that

$$C_{cost}^{\varepsilon} \ge \exp\left(C\varepsilon^{-1/2}\right), \quad \forall \varepsilon \in (0, \varepsilon_0).$$

Idea of proof (M < 0)

We construct a particular solution $\hat{\varphi}$ of

Cost in the limit

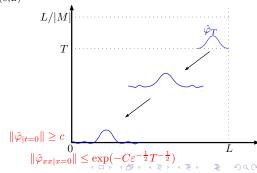
$$\left\{ \begin{array}{ll} -\varphi_t - \varepsilon \varphi_{xxx} + M\varphi_x = 0 & \text{in } Q, \\ \varphi_{|x=0} = 0, \quad \varphi_{x|x=0} = 0, \quad (\varepsilon \varphi_{xx} - M\varphi)_{|x=L} = 0 & \text{in } (0,T), \\ \varphi_{|t=T} = \hat{\varphi}_T & \text{in } (0,L), \end{array} \right.$$

where
$$0 \le \hat{\varphi}_T \in \mathcal{C}_0^{\infty}(0, L)$$
, $\|\hat{\varphi}_T\|_{L^2(0, L)} = 1$.

We prove:

- $\|\hat{\varphi}_{xx|x=0}\|_{L^2(0,T)} \le \exp\left(-C\varepsilon^{-1/2}T^{-1/2}\right)$
- $\|\hat{\varphi}_{|t=0}\|_{L^2(0,L)} \ge c > 0$

and we can conclude.



Uniform controllability? (M > 0)

- $C_{cost}^{\varepsilon} \leq \exp(-C(T,M)\varepsilon^{-1/2})$, T large?
- A possible strategy is to combine an observability inequality:

$$\|\varphi_{|t=T/2}\|_{L^2(0,L)} \le \exp\left(C\varepsilon^{-1/2}\right) \|\varphi_{xx|x=0}\|_{L^2(0,T)}$$

with an exponential dissipation estimate (T large enough):

$$\|\varphi_{|t=0}\|_{L^2(0,L)} \le \exp\left(-CT\varepsilon^{-1/2}\right) \|\varphi_{|t=T/2}\|_{L^2(0,L)}$$

In our case: we do not know how to prove such a dissipation estimate...
 Maybe it is false...

Uniform controllability? (M > 0)

- $C_{cost}^{\varepsilon} \leq \exp(-C(T, M)\varepsilon^{-1/2})$, T large?
- A possible strategy is to combine an observability inequality:

$$\|\varphi_{|t=T/2}\|_{L^2(0,L)} \le \exp\left(C\varepsilon^{-1/2}\right) \|\varphi_{xx|x=0}\|_{L^2(0,T)}$$

with an exponential dissipation estimate (T large enough):

$$\|\varphi_{|t=0}\|_{L^2(0,L)} \le \exp\left(-CT\varepsilon^{-1/2}\right) \|\varphi_{|t=T/2}\|_{L^2(0,L)}.$$

Uniform controllability? (M > 0)

- $C_{cost}^{\varepsilon} < \exp(-C(T, M)\varepsilon^{-1/2})$. T large?
- A possible strategy is to combine an observability inequality:

$$\|\varphi_{|t=T/2}\|_{L^2(0,L)} \le \exp\left(C\varepsilon^{-1/2}\right) \|\varphi_{xx|x=0}\|_{L^2(0,T)}$$

with an exponential dissipation estimate (T large enough):

$$\|\varphi_{|t=0}\|_{L^2(0,L)} \le \exp\left(-CT\varepsilon^{-1/2}\right) \|\varphi_{|t=T/2}\|_{L^2(0,L)}.$$

In our case: we do not know how to prove such a dissipation estimate...

- $C_{cost}^{\varepsilon} \leq \exp(-C(T, M)\varepsilon^{-1/2})$, T large?
- A possible strategy is to combine an observability inequality:

$$\|\varphi_{|t=T/2}\|_{L^2(0,L)} \le \exp\left(C\varepsilon^{-1/2}\right) \|\varphi_{xx|x=0}\|_{L^2(0,T)}$$

with an exponential dissipation estimate (T large enough):

$$\|\varphi_{|t=0}\|_{L^2(0,L)} \le \exp\left(-CT\varepsilon^{-1/2}\right) \|\varphi_{|t=T/2}\|_{L^2(0,L)}.$$

 In our case: we do not know how to prove such a dissipation estimate... Maybe it is false...

0000

Yes, it is false

Theorem

Let T, L, M > 0 and $\delta \in (0, 1)$. Then, there exists $\varepsilon_0 > 0$ such that

$$C_{cost}^{\varepsilon,0} \ge C \sinh\left((1-\delta)LM^{1/2}\varepsilon^{-1/2}\right), \quad \forall \varepsilon \in (0,\varepsilon_0)$$

where C depends polynomially on ε^{-1} and ε .

► Here:

$$C_{cost}^{\varepsilon,0} := \sup_{\substack{y_0 \in H_n^3(0,L) \\ y_0 \neq 0}} \min_{\substack{v \in L^2(0,T) \\ y_{|t=T}=0}} \frac{\|v\|_{L^2(0,T)}}{\|y_0\|_{H_n^3(0,L)}}$$

and

$$H_n^3(0,L) := \{ h \in H^3(0,L) : h'(L) = h''(L) = 0 \}.$$

▶ In particular, since $C_{cost}^{\varepsilon} \geq C_{cost}^{\varepsilon,0}$ for any $\kappa \in (0,1)$:

$$C_{cost}^{\varepsilon} \ge \exp((1-\kappa)LM^{1/2}\varepsilon^{-1/2}), \quad \forall \varepsilon \in (0, \varepsilon_0).$$

An auxiliary problem

Find $u \in L^2(0,T)$ such that:

$$\left\{ \begin{array}{ll} w_t + \varepsilon w_{xxx} - Mw_x = 0 & \text{in } (0,T) \times (\delta L,L), \\ \frac{w_{xx|x=\delta L} = u(t)}{w_{|t=0} = w_0, \quad w_{|t=T} = 0} & w_{xx|x=L} = 0 & \text{in } (0,T), \\ w_{|t=0} = w_0, \quad w_{|t=T} = 0 & \text{in } (\delta L,L). \end{array} \right.$$

We define its cost: $K_{cost}^{\varepsilon} := \sup_{\substack{w_0 \in H_n^3(\delta L, L) \\ w_0 \neq 0}} \min_{\substack{u \in L^2(0, T) \\ w_{|t=T} = 0}} \frac{\|u\|_{L^2(0, T)}}{\|w_0\|_{H_n^3(\delta L, L)}}.$

- We prove that $K_{cost}^{\varepsilon} \geq C \sinh \left((1 \delta) L M^{1/2} \varepsilon^{-1/2} \right)$.
- ▶ By setting $u:=y_{xx|x=\delta L}$, we can prove that $K_{cost}^{\varepsilon}\lesssim C_{cost}^{\varepsilon,0}$.
 - We show

$$||y_{xx}|_{x=\delta L}||_{L^2(0,T)} \le C(||v||_{L^2(0,T)} + ||y_0||_{H_n^3(0,L)}),$$

where C depends polynomially on ε^{-1} and ε .

Particular solution for the adjoint equation

The adjoint equation is given by

$$\left\{ \begin{array}{ll} -\psi_t - \varepsilon \psi_{xxx} + M\psi_x = 0 & \text{in } (0,T) \times (\delta L, L), \\ \psi_{x|x=\delta L} = (\varepsilon \psi_{xx} - M\psi)_{|x=\delta L} = (\varepsilon \psi_{xx} - M\psi)_{|x=L} = 0 & \text{in } (0,T) \times (\delta L, L), \\ \psi_{|t=T} = \psi_T & \text{in } (\delta L, L). \end{array} \right.$$

- $\sup_{h \in H^3(\delta L, L)} \frac{\int_{\delta L}^L \psi_{|t=0} h}{\|h\|_{H^3(\delta L, L)}} \le \varepsilon K_{cost}^{\varepsilon} \|\psi_{|x=\delta L}\|_{L^2(0,T)} \text{ (observability ineq.)}.$
- $\hat{\psi}(x) := \cosh\left((x \delta L)M^{1/2}\varepsilon^{-1/2}\right)$ is a solution.

•00

Dissipation estimate for the adjoint equation

For the solutions of

$$\begin{cases} -\varphi_t - \varepsilon \varphi_{xxx} + M\varphi_x = 0 & \text{in } Q, \\ \varphi_{|x=0} = 0, \quad \varphi_{x|x=0} = 0, \quad (\varepsilon \varphi_{xx} - M\varphi)_{|x=L} = 0 & \text{in } (0,T), \\ \varphi_{|t=T} = \varphi_T & \text{in } (0,L) \end{cases}$$

we can prove an exponential dissipation estimate of the kind:

$$\begin{split} \int_0^{\delta L} |\varphi_{|t=0}|^2 & \leq \exp\left(-CT^{1/2}\varepsilon^{-1/2}\right) \int_0^L |\varphi_{|t=T/2}|^2 \\ & + \exp\left(-CT^{-1/2}\varepsilon^{-1/2}\right) \int_0^T |\varphi_{|x=L}|^2, \, \delta \in (0,1), T \text{ large}. \end{split}$$

- $ightharpoonup \exp\left(-CT^{1/2}\varepsilon^{-1/2}\right)$ counteracts observability constant (from Carleman).
- $ightharpoonup arphi_{|x=L|}$ allows to define a control like $y_{xx|x=L}=v_2(t)$.
- ▶ Price to pay: initial conditions y_0 supported in $[0, \delta L)$.

First case

$$\begin{split} y_0 \in L^2(0,L), \ y_{0|(\delta L,L)} &= 0 : \\ \begin{cases} y_t + \varepsilon y_{xxx} - M y_x &= 0 \\ y_{|x=0} &= \mathbf{v_0(t)}, \quad y_{x|x=L} &= 0, \quad y_{xx|x=L} &= \mathbf{v_2(t)} \\ y_{|t=0} &= y_0, \quad y_{|t=T} &= 0 \end{cases} & \text{in } Q, \\ y_{0} &= \mathbf{v_0(t)}, \quad \mathbf{v_0(t)$$

We are able to prove:

$$\|\mathbf{v_0}\|_{L^2(0,T)} + \|\mathbf{v_2}\|_{L^2(0,T)} \le C_0 \exp\left(-C(T,M)\varepsilon^{-1/2}\right) \|y_0\|_{L^2(0,\delta L)}.$$

Observability inequality "for free" from previous case

$$\|\varphi_{|t=T/2}\|_{L^2(0,L)} \le \exp\left(C\varepsilon^{-1/2}\right) \|\varphi_{xx|x=0}\|_{L^2(0,T)}.$$

Combined with the dissipation estimate we obtain:

$$\|\varphi_{|t=0}\|_{L^{2}(0,\delta L)} \leq \exp\left(-C(T,M)\varepsilon^{-1/2}\right) \|\varphi_{xx|x=0}\|_{L^{2}(0,T)} + \exp\left(-CT^{-1/2}\varepsilon^{-1/2}\right) \|\varphi_{|x=L}\|_{L^{2}(0,T)}.$$

Second case

$$\begin{split} y_0 \in L^2(0,L), \ y_{0\mid(\delta L,L)} &= 0 \\ \begin{cases} y_t + \varepsilon y_{xxx} - My_x &= 0 \\ y_{\mid x=0} &= 0, \quad y_{x\mid x=L} &= \mathbf{v_1(t)}, \quad y_{xx\mid x=L} &= \mathbf{v_2(t)} \\ y_{\mid t=0} &= y_0, \quad y_{\mid t=T} &= 0 \end{cases} & \text{in } Q, \\ \vdots & \text{in } (0,T), \\ \vdots & \text{in } (0,L). \end{split}$$

We are able to prove:

$$\|\mathbf{v}_1\|_{L^2(0,T)} + \|\mathbf{v}_2\|_{L^2(0,T)} \le C_0 \exp\left(-C(T,M)\varepsilon^{-1/2}\right) \|y_0\|_{L^2(0,\delta L)}.$$

▶ New Carleman inequality:

$$\iint_{Q} e^{-2s\alpha} |\varphi|^{2} \le C_{0} \int_{0}^{T} e^{-2s\alpha} (|\varphi_{x|x=L}|^{2} + |\varphi_{x=L}|^{2}), \quad \alpha = \frac{p(x)}{t^{1/2} (T-t)^{1/2}}.$$

▶ No need to use $\phi := \varepsilon \varphi_{xx} - M\varphi$.

Perspectives

Remaining case:

$$\begin{cases} y_t + \varepsilon y_{xxx} - M y_x = 0 & \text{in } Q, \\ y_{|x=0} = v_0(t), & y_{x|x=L} = v_1(t), & y_{xx|x=L} = 0 & \text{in } (0,T), \\ y_{|t=0} = y_0, & y_{|t=T} = 0 & \text{in } (0,L). \end{cases}$$
$$\|v_0\|_{L^2(0,T)} + \|v_1\|_{L^2(0,T)} \le C_0 \exp\left(-C\varepsilon^{-1/2}\right) \|y_0\|_{L^2(0,L)}?$$
$$\|v_0\|_{L^2(0,T)} + \|v_1\|_{L^2(0,T)} \ge C_0 \exp\left(C\varepsilon^{-1/2}\right) \|y_0\|_{L^2(0,L)}?$$

Nonlinear case:

or

$$\left\{ \begin{array}{ll} y_t + \varepsilon y_{xxx} - My_x + yy_x = 0 & \text{in } Q, \\ y_{|x=0} = {\color{red} v(t)}, \quad y_{|x=L} = 0, \quad y_{x|x=L} = 0 & \text{in } (0,T), \\ y_{|t=0} = y_0, \quad y_{|t=T} = 0 & \text{in } (0,L). \end{array} \right.$$

Uniform local null controllability?

Thank you for your attention