Profesor: Nicolás Carreño Ayudante: Andrés Sandoval Viernes 13 de Mayo, 2016

CERTAMEN 1 MAT-276: OPTIMIZACIÓN NUMÉRICA

Pregunta 1.(20 pts.) Encuentre los extremales para los siguientes funcionales:

(a)
$$(10 \text{ pts.})$$
 $J(y,z) = \int_{1}^{2} ((y')^{2} + (z')^{2} + z^{2}) dx$, sujeto a $y(1) = 1$, $z(1) = 0$, $y(2) = 2$, $z(2) = 1$.
(b) (10 pts.) $J(y) = \int_{0}^{1} (y')^{2} dx$, sujeto a $y(0) = 0$, $y(1) = 5$, $\int_{0}^{1} y dx = 2$.

Pregunta 2.(30 pts.) Sea $\varphi = \varphi(x)$ una curva que separa dos puntos fijos (x_0, y_0) y (x_1, y_1) en el plano. Considere el funcional

$$J(y) = \int_{x_0}^{x_1} L(x, y, y') dx$$
, sujeto a $y(x_0) = y_0$, $y(x_1) = y_1$,

con L dado por

$$L(x, y, y') = \begin{cases} L_1(x, y, y') & \text{si } x \in [x_0, c], \\ L_2(x, y, y') & \text{si } x \in (c, x_1], \end{cases}$$

donde $c \in (x_0, x_1)$ es el punto donde y = y(x) intersecta a la curva φ (note que c es variable). Encuentre las ecuaciones de Euler-Lagrange que deben satisfacer los extremos de J(y).

Hint: Puede usar que si $J = J_1 + J_2$, entonces $\delta J = \delta J_1 + \delta J_2$, donde δJ es la variación de J(y).

Pregunta 3.(25 pts.) Sea el funcional cuadrático

$$J(y) = \int_0^a ((y')^2 - by^2) dx.$$

Encuentre los valores de a > 0 y $b \in \mathbb{R}$ que aseguren que J(y) es definido positivo para todo $y \in C^1(0, a)$ tal que y(0) = 0 e y(a) = 0.

Pregunta 4.(25 pts.) Sea el funcional

$$J(y) = 2\pi \int_{-1}^{1} y\sqrt{1 + (y')^2} dx$$
, sujeto a $y(-1) = y(1)$, $y > 0$.

Se quiere encontrar y = y(x) que minimice J(y) usando variables canónicas. Para ello:

- (a) (10 pts.) Encuentre el Hamiltoniano del sistema y deduzca que es constante en cada punto de una curva extremal.
- (b) (10 pts.) Usando la parte anterior, deduzca a partir de las ecuaciones canónicas que los extremales de J(y) son soluciones de

$$y'' - C^2 y = 0,$$

donde C es una constante.

(c) (5 pts.) Demuestre que la curva que resuelve el problema tiene la forma

$$y(x) = A \cosh(x/B),$$

donde A, B > 0.