Matemática 2 MAT022

Clase 2 (Complementos)

Departamento de Matemática Universidad Técnica Federico Santa María

Tabla de Contenidos

- Matrices simétricas y antisimétricas
 - Traspuesta de una matriz
 - Matrices simétricas y matrices antisimétricas
 - Matrices invertibles

Tabla de contenidos

- Matrices simétricas y antisimétricas
 - Traspuesta de una matriz
 - Matrices simétricas y matrices antisimétricas
 - Matrices invertibles

Definición

Sea $A=(a_{ij})\in M_{m\times n}(\mathbb{K})$. Se define la matriz **traspuesta de** A, en símbolos A^T , como la matriz de orden $m\times n$ definida por:

$$A^T = (a_{ji}).$$

Ejemplo

Considere la matriz $A \in M_{2\times 3}(\mathbb{R})$ dada por:

$$A = \begin{pmatrix} -1 & 3 & 4 \\ 1 & 1 & 2 \end{pmatrix}.$$

Entonces:

$$A^T = \begin{pmatrix} -1 & 1\\ 3 & 1\\ 4 & 2 \end{pmatrix} \in M_{3 \times 2}(\mathbb{R}).$$

Proposición

Sean $A, B \in M_{m \times n}(\mathbb{R})$ y $\alpha \in \mathbb{K}$. Entonces:

- $(A+B)^T = A^T + B^T.$

Además:

Proposición

Sean $A \in M_{m \times n}(\mathbb{K})$ y $B \in M_{n \times p}(\mathbb{K})$, entonces:

$$(AB)^T = B^T A^T.$$

Definición

Sea $A \in M_{n \times n}(\mathbb{K})$. Diremos que:

- A es una matriz **simétrica** si $A^T = A$.
- 2 A es una matriz **antisimétrica** si $A^T = -A$.

Proposición

Sean A y B matrices simétricas del mismo orden, entonces:

- \bullet A+B es simétrica.
- ② αA es simétrica para todo $\alpha \in \mathbb{K}$.

Proposición

Si A es una matriz cuadrada, entonces:

- $A + A^T$ es simétrica.
- \bigcirc AA^T y A^TA son matrices simétricas.
- \bullet $A A^T$ es antisimétrica.

Proposición

Toda matriz cuadrada se puede descomponer como suma de una matriz simétrica y una matriz antisimétrica. En efecto, note que:

$$A = \underbrace{\frac{A + A^T}{2}}_{\textit{simétrica}} + \underbrace{\frac{A - A^T}{2}}_{\textit{antisimétrica}}$$

Definición

Sea $A \in M_{n \times n}(\mathbb{K})$. Diremos que A es una matriz **invertible** si existe una matriz $B \in M_{n \times n}(\mathbb{K})$ tal que:

$$AB = BA = I_n$$

La matriz B se conoce como la matriz **inversa** de A. En símbolos, anotamos $B = A^{-1}$.

Ejemplo

- La matriz $\begin{pmatrix} 1 & 2 & -3 \\ 1 & -2 & -2 \end{pmatrix}$ no es invertible.
- 2 La matriz $\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ no es invertible.

La matriz inversa de una matriz invertible es única.

Ejemplo

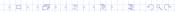
La matriz
$$A=\begin{pmatrix}1&2\\2&-2\end{pmatrix}$$
 es invertible. Además $A^{-1}=\begin{pmatrix}1/3&1/3\\1/3&-1/6\end{pmatrix}$.

Para matrices invertibles o no singulares se cumple:

Proposición

Sean $A, B \in M_{n \times n}(\mathbb{K})$ matrices invertibles. Entonces:

- $(A^{-1})^{-1} = A.$
- (αA)⁻¹ = $\frac{1}{\alpha}A^{-1}$ para todo $\alpha \neq 0$.
- $(A^n)^{-1} = (A^{-1})^n$ para todo entero no negativo n.



Para el caso 2×2 , tenemos:

Teorema

Definición

El número ad - bc (en \mathbb{K}) se llama el **determinante** de la matriz A y se anota por $\det A = ad - bc$.

Teorema

Sean $A, B \in M_{2 \times 2}(\mathbb{K})$. Entonces:

$$\det(AB) = \det A \cdot \det B.$$

