Matemática 2 MAT022

Clase 14 (Complementos)

Departamento de Matemática
Universidad Técnica Federico Santa María

Tabla de Contenidos

- Diagonalización de matrices(Continuación)
 - Definición y ejemplos
 - Criterios de diagonalización

Definición

Sean $A,B\in M_{n\times n}(\mathbb{R})$. Diremos que A es **similar** o **semejante** con B, si existe una matriz $P\in M_{n\times n}(\mathbb{R})$ tal que:

$$P^{-1}AP = B.$$

Si A y B son semejantes, anotaremos $A \sim B$.

Teorema

Sean $A, B \in M_{n \times n}(\mathbb{R})$ matrices semejantes, entonces:

- ② $p_A(\lambda) = p_B(\lambda)$ (A y B tienen el mismo polinomio característico).

Definición

Diremos que una matriz $A \in M_{n \times n}(\mathbb{R})$ es **diagonalizable** si es semejante a una matriz diagonal $D \in M_{n \times n}(\mathbb{R})$. Esto es, que exista una matriz $P \in M_{n \times n}(\mathbb{R})$ invertible tal que:

$$P^{-1}AP = D.$$

Ejemplo

Sea $A=\begin{pmatrix} 3 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} \in M_{3\times 3}(\mathbb{R})$ es diagonalizable. En efecto,

para la matriz P dada por $P=\begin{pmatrix}1&1&1\\1&1&0\\1&0&1\end{pmatrix}$, se cumple que:

$$P^{-1}AP = \text{diag}[1, 2, 2].$$

Supongamos que $B=\left\{v_1,\,v_2,\ldots,v_n\right\}$ es una base cualquiera de $\mathbb{R}^n.$ Defina:

$$P = \left([v_1]_{\mathcal{C}} \ [v_2]_{\mathcal{C}} \ \cdots \ [v_n]_{\mathcal{C}} \right) \in M_{n \times n}(\mathbb{R}),$$

donde C es la base canónica de \mathbb{R}^n .

Supongamos que $A \in M_{n \times n}(\mathbb{R})$ es una matriz diagonalizable con matriz diagonal asociada $D = \operatorname{diag}\{\lambda_1, \lambda_2, \dots, \lambda_n\}$. Luego como:

$$P^{-1}AP = D \implies AP = DP,$$

se tiene que la j-ésima columna del producto AP, está dado por:

$$A \cdot [v_j]_{\mathcal{C}} = \lambda_j [v_j]_{\mathcal{C}}$$

En otras palabras que $\lambda_j \in \sigma(A)$ y $v_j \in W_{\lambda_j}$.

Podemos decir, entonces que, una matriz $A \in M_{n \times n}(\mathbb{R})$ es diagonalizable si (necesariamente) existe una base para el espacio \mathbb{R}^n formada por *vectores propios* de A.

De hecho, no difícil mostrar que la recíproca también es cierta.

Teorema

Una matriz $A \in M_{n \times n}(\mathbb{R})$ es diagonalizable si y solo si \mathbb{R}^n tiene una base de vectores propios de A.

Se tienen las siguientes propiedades:

Teorema

Para cada valor propio de una matriz $A \in M_{n \times n}(\mathbb{R})$ se tiene que la multiplicidad geométrica es menor o igual que la multiplicidad algebraica.

Teorema

Sean $A \in M_{n \times n}(\mathbb{R})$ una matriz y $\lambda, \mu \in \sigma(A)$ valores propios de A distintos, entonces, $W_{\lambda} \cap W_{\mu} = \{0\}.$

En particular, si $u \in W_{\lambda}$ y $v \in W_{\mu}$, entonces u y v son linealmente independientes.

De los resultados anteriores, podemos deducir el siguiente criterio de diagonalización:

Teorema

Una matriz $A \in M_{n \times n}(\mathbb{R})$ es diagonalizable si y solo si para cada valor propio las multiplicidades algebraicas y geométricas coinciden.

En particular, si todos los valores propios son distintos, entonces la matriz es diagonalizable.

Observación: El recíproco no es cierto.

Ejemplo

Sea
$$A=\begin{pmatrix} -9&4&4\\-8&3&4\\-16&8&7 \end{pmatrix}\in M_{3 imes 3}(\mathbb{R}).$$
 ¿Es A diagonalizable? Justifique.

Ejemplo

Sea
$$A=egin{pmatrix}0&0&0&0\\a&0&0&0\\0&b&0&0\\0&0&c&0\end{pmatrix}\in M_{4 imes 4}(\mathbb{R}).$$
 ¿Bajo qué condiciones sobre

los parámetros a, b y c la matriz A diagonalizable? Justifique.