Matemática 2 MAT022

Clase 10 (Complementos)

Departamento de Matemática Universidad Técnica Federico Santa María

Tabla de Contenidos

- Espacios Vectoriales
 - Subespacio Vectorial

Sea V un conjunto no vacío y sea $\mathbb{K} = \mathbb{R}$ o \mathbb{C} . Se definen sobre V dos operaciones:

- **Adición:** Es una función que a cada par de elementos $u, v \in V$ les asigna un elemento $u + v \in V$.
- ② **Producto por escalar:** Es una función que a cada $\alpha \in \mathbb{K}$ y cada $v \in V$ les asigna un elemento $\alpha \cdot v \in V$.

Un **espacio vectorial sobre** $\mathbb K$ es un conjunto $(V,+,\cdot)$ que tiene una adición y multiplicación por escalar que satisfacen las siguientes propiedades:

- 2 $u + (v + w) = (u + v) + w \quad \forall u, v, w \in V.$
- $\forall v \in V, \exists (-v) \in V \text{ tal que } v + (-v) = 0_V.$
- $\bullet \quad \alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v \quad \forall u, v \in V, \forall \alpha \in \mathbb{K}.$

Definición

Los elementos de V se llaman **vectores** y los elementos de $\mathbb K$ se llaman **escalares**.

Ejemplos

- $(\mathbb{R}^n,+,\cdot)$ es un espacio vectorial sobre \mathbb{R} . Sin embargo, $(\mathbb{R}^n,+,\cdot)$ **no** es un espacio vectorial sobre \mathbb{C} .
- ② $(M_{m \times n}(\mathbb{R}), +, \cdot)$ es un espacio vectorial sobre \mathbb{R} .
- El conjunto de los polinomios con coeficientes reales

$$\mathbb{R}[x] = \{p(x) = a_0 + a_1 x + \ldots + a_n x^n \colon a_i \in \mathbb{R}, n \in \mathbb{N}\}\$$

es un espacio vectorial real.

El conjunto de las funciones reales

$$\mathcal{F} = \{ f : A \subset \mathbb{R} \to \mathbb{R} \}$$

con las operaciones:

- $(f+g)(x) = f(x) + g(x) \quad \forall f, g \in \mathcal{F},$
- $(\alpha f)(x) = \alpha f(x) \quad \forall \alpha \in \mathbb{R}, \forall f \in \mathcal{F}$

es un espacio vectorial sobre \mathbb{R} .

Ejercicio

Sean X un conjunto cualquiera no vacío y $(V,+,\cdot)$ un espacio vectorial sobre \mathbb{K} . Se define el conjunto $\mathcal{F}(X;V)$ como el conjunto de todas las funciones $f:X\to V$. Es decir:

$$\mathcal{F}(X;V) = \big\{ f: X \to V: f \text{ es función} \big\}.$$

Dotemos a $\mathcal{F}(X;V)$ de las operaciones adición $(f\oplus g)$ y producto por escalar $(\alpha\odot f)$ siguientes:

- $(f \oplus g)(x) = f(x) + g(x).$
- $\bullet \ (\alpha \odot f)(x) = \alpha \cdot f(x).$

Demuestre que $(\mathcal{F}(X;V),\oplus,\odot)$ es un espacio vectorial sobre \mathbb{K} .

Sean V un espacio vectorial sobre \mathbb{K} y $W\subseteq V$. Diremos que W es un **subespacio vectorial de** V si W es un espacio vectorial sobre \mathbb{K} . En este caso anotaremos $W\leq V$.

Como $W \subseteq V$, las operaciones sobre los elementos de W son las operaciones del espacio V.

Teorema (Caracterización de subespacio)

Sean V un espacio vectorial sobre \mathbb{K} y $W \subseteq V$. Entonces, $W \leq V$ si y solo si se satisfacen las tres condiciones:

- $0_V \in W$.

Ejemplos

- **③** Si V es un espacio vectorial, entonces $V \le V$ y $\{0\} \le V$. Estos son llamados los **subespacios triviales** de V.
- 2 Las rectas que contienen al origen son subespacios vectoriales de \mathbb{R}^n .
- **3** En \mathbb{R}^3 los planos que pasan por el origen son subespacios vectoriales de \mathbb{R}^3 .
- **3** Las matrices simétricas y las matrices antisimétricas son subespacios vectoriales de $M_{n\times n}(\mathbb{R})$.
- lacktriangle El conjunto de los polinomios de grado menor o igual a n

$$\mathbb{R}_n[x] = \{p(x) = a_0 + a_1 x + \dots + a_n x^n : a_i \in \mathbb{R}\}$$

es un subespacio vectorial de $\mathbb{R}[x]$.

Sea $I \subseteq \mathbb{R}$ un intervalo. El conjunto de las funciones continuas de I en \mathbb{R} es un subespacio vectorial de $\mathcal{F}(I;\mathbb{R})$.

Ejemplo

Sea W definido por:

$$W = \Big\{ p \in \mathbb{R}_3[x] : \int_0^1 p(x) dx = p'(1) \Big\}.$$

Verifique que $W \leq \mathbb{R}_3[x]$.

Ejemplo

Sea W definido por:

$$W = \{ A \in M_{2 \times 2}(\mathbb{R}) : a_{11} = a_{22}, a_{21} = -a_{12} \}.$$

Verifique que $W \leq M_{2\times 2}(\mathbb{R})$.

Proposición

Sean W_1 y W_2 subespacios vectoriales de V. Se cumple que:

- ② $W_1 + W_2 \le V$, donde

$$W_1 + W_2 = \{ w \in V : \exists w_i \in W_i, i = 1, 2, \text{ tal que } w = w_1 + w_2 \}.$$

Ejemplo

Considere
$$A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{R}).$$

① Sea W_A el conjunto de todas las matrices $X \in \mathcal{M}_{2\times 2}(\mathbb{R})$ tales que:

$$A^T X = X A^2.$$

Verifique que $W_A \leq \mathcal{M}_{2\times 2}(\mathbb{R})$.

2 ¿Existen subespacios W_1 y W_2 de W_A de modo que $W_A = W_1 + W_2$? Justifique.

Sean V un espacio vectorial sobre \mathbb{K} y $W_1, W_2 \leq V$. Diremos que V es **suma directa** de los subespacios W_1 y W_2 si:

- $W_1 \cap W_2 = \{0\}.$
- $V = W_1 + W_2.$

En tal caso anotaremos $V = W_1 \bigoplus W_2$.

Ejercicios

- Onsiderar el plano W: x+y-z=0 y la recta L: x=y=z. Se cumple que $\mathbb{R}^3=W \bigoplus L$.
- ② En $V = \mathcal{F}(\mathbb{R}; \mathbb{R})$, defina \mathcal{F}_P como el subespacio de las funciones pares (¡verificar!) y \mathcal{F}_I el subespacio de las funciones impares (¡verificar!). Entonces:

$$V = \mathcal{F}_P \bigoplus \mathcal{F}_I.$$

Oemuestre que el espacio de matrices de orden n puede descomponerse como suma directa de las matrices simétricas y las antisimétricas.

